

 [image: _images/psiturk_logo_small_trans.png]

psiTurk Documentation

Welcome to psiTurk’s documentation. To learn more about the project
please visit https://psiturk.org.

To actually use psiTurk you’ll first need to install it on your local
computer or server. Instructions can be found on the Getting psiTurk installed on your computer page.
Afterwards, head over to our quickstart guide [https://www.psiturk.org/quick_start] ,
or for a more detailed tutorial demonstrating how to setup a simple experiment
with psiTurk, visit Getting up and running with the basic Stroop task.

User’s Guide

	Forward
	Understanding the psiTurk design philosophy: An analogy

	What is Mechanical Turk?

	What is psiTurk?

	How do I host a psiTurk experiment?

	Do I have to learn how to code?

	Getting psiTurk Installed on Your Computer
	Installation requirements

	Installation steps

	System-specific notes

	Getting setup with Amazon Mechanical Turk
	Creating an AWS account

	Obtaining AWS credentials

	Creating an AMT Requester account

	Linking funds

	Additional instructions

	Getting setup with psiturk.org
	Creating a psiturk.org account

	Obtaining psiturk.org API credentials

	psiturk.org Secure Ad Server
	Ads, Amazon Mechanical Turk, and the External HIT type

	Why use the psiturk.org Secure Ad Server?

	Sound great, how do I use it?

	Sharing and replicating with the psiTurk.org Experiment Exchange

	Quickstart

	Configuration Files
	Global configuration file

	Local configuration file

	Command-line Interface
	Starting the psiTurk shell

	The psiTurk shell prompt

	amt_balance command

	config command + subcommands

	db command + subcommands

	debug command

	download_datafiles command

	help command

	hit command + subcommands

	psiturk_status command

	quit command

	server command + subcommands

	status command

	mode command

	worker command + subcommands

	Configuring Databases
	Using SQLite

	Using a self-hosted MySQL database (recommended)

	Obtaining a low-cost (or free) MySQL database on Amazon’s Web Services Cloud

	AWS Regions

	Creating an RDS Instance

	Obtaining a free MySQL database via OpenShift

	Step-by-step Tutorials
	Getting up and running with the basic Stroop task

	Decomposing the Stroop task

	Anatomy of a basic psiTurk project
	config.txt

	custom.py

	participants.db

	server.log

	The static/ directory

	The templates/ directory

	Recording data
	Recording trial data

	Recording unstructured data

	Saving the data

	Browser event data

	Retrieving Datasets
	Retrieving using download_datafiles

	Retrieving programmatically

	How the datastring is structured

	Customizing psiTurk

	Using external survey tools with psiTurk
	An example with Qualtrics

	What about not-Qualtrics?

	Running psiTurk on Heroku

	Running psiTurk on Amazon’s Elastic Compute Cloud (EC2)
	Setting up a psiTurk EC2 instance using a pre-built image

	Connecting to your EC2 instance using SSH

	Understanding Error Messages

	Frequently Asked Questions
	Why doesn’t psiTurk work on Windows?

	I need an experiment to do X, will psiTurk be able to do this?

	My university will not give me a static IP address. Can I still use psiTurk?

	I’m trying to run psiTurk at home using a cable modem or other connection. Will it work?

	I’m having trouble with my AWS/AMT credentials

	What do I need to know about running psiTurk on a remote server?

	Can you program my experiment for me?

	I’m having Javascript errors when designing my experiment. Can you help?

	Where is the /static/js/psiturk.js file? It doesn’t appear in any of the experiments I have downloaded!

	Getting help

	Disclaimer

Contributing to psiTurk

	Contributing to psiTurk
	Contribution guidelines

	Decision process

	Project Roadmap
	General priorities

	Version 3.0

API Reference

	psiturk.js API
	Creating the psiTurk object

	psiturk.taskdata

	psiturk.preloadPages(pagelist)

	psiturk.getPage(pagename)

	psiturk.showPage(pagename)

	psiturk.preloadImages(imagelist)

	psiturk.recordTrialData(datalist)

	psiturk.recordUnstructuredData(field, value)

	psiturk.saveData([callbacks])

	psiturk.completeHIT()

	psiturk.doInstructions(pages, callback)

	psiturk.finishInstructions()

	psiturk.org RESTful API

Forward

Read this if you want to find out more about Amazon Mechanical Turk
(AMT) and how psiTurk can help you run web-based experiments on AMT
painlessly and quickly. This section will also tell you what problems
psiTurk does and does not solve to help you gauge whether it will be
useful to you.

Understanding the psiTurk design philosophy: An analogy

Back before music was entirely digital people got their music on
cassette tapes. To play the cassette you needed a player device (e.g.,
walkman or boombox). People would trade tapes, make copies of tapes,
make mixtapes of their favorite songs. It was awesome.

psiTurk is like a player but instead of playing music, it plays
(i.e., runs) experiments. You download and install the psiTurk application
to your computer. This installs a command line tool psiturk which serves as a
multi-function “player.” It can (figuratively speaking) run, pause,
eject, and configure a given experiment.

To make it useful though psiTurk needs something to play. You can download
from our experiment exchange [http://psiturk.org/ee] library an archive
which contains all the files specific to a given experiment. You basically
“play” the downloaded experiment using the psiturk command. You can easily
switch experiments by downloading another experiment archive and “playing” it.
Even better, you can make your own experiments by remixing others (borrowing
code from projects in the experiment exchange) or building your own from scratch.

The goal of psiturk was to build the “player” so you can spend more of
your time on the important part of your research… the experiment (i.e.,
mix tape)!

Oh, and in case you missed it, “playing” someone else’s experiment
posted to the experiment exchange [http://psiturk.org/ee] basically
means independently replicating it!

What is Mechanical Turk?

Amazon Mechanical Turk (AMT) is an online platform that lets you post a
wide variety of tasks to a large pool of participants. Instead of
spending weeks to run experiments in the lab, it lets you collect data
of a large number of people within a couple of hours.

Some key terminology for understanding the AMT model:

	HIT (Human Intelligence Task) - A unit of work (e.g. a psychology experiment)

	Requester - The person or entity that posts HITs (e.g. a researcher or lab)

	Worker - The person that completes HITs (i.e. a participant in your study)

Workers get paid a fixed amount for each HIT which is determined by the
requester. Requesters can also make bonus payments to specific workers.
Amazon collects a 10% fee for each payment.

What is psiTurk?

AMT provides some very basic templates that you can use to design HITs
(particularly questionnaires), but these will most likely not serve your
purposes as an experimenter. The psiTurk toolbox is designed to help
you run fully-customized and dynamic web-experiments on AMT.
Specifically, it allows you to:

	Run a web server for your experiment

	Test your experiment

	Interact with AMT to recruit, post HITs, filter, and pay participants
(AMT workers)

	Manage databases and export data

psiTurk also includes a powerful interactive command interface that
lets you manage most of your AMT activity.

How do I host a psiTurk experiment?

psiTurk experiments can be hosted on almost anything that has an
internet connection and a public port, such as an office computer or
laptop. You’ll need a static IP to prevent your experiment’s URL from
changing. Users without one (e.g., most home users) can use a dynamic
DNS [http://en.wikipedia.org/wiki/Dynamic_DNS] service to forward a
URL to their dynamic IP. Here’s a list of free DDNS
providers [http://dnslookup.me/dynamic-dns/]. You also may need
to forward a port [http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/]
from your home routers to you personal computer.

Do I have to learn how to code?

Yes. To run your experiment in a web browser you need to have at least
some basic web programming skills (especially using HTML, CSS, and
JavaScript).

Fortunately there exist many resources and tutorials that can help get
started. If you are completely new to web programming, you might want to
check out Codecademy [http://www.codecademy.com/tracks/web], for
example, for interactive tutorials on building websites.

Once you mastered the basics, you can take advantage of the vast number
of libraries and tools that can help you to build sharp and
sophisticated experiments with the support of a large community of
users. For specific questions, visit
stackoverflow.com [http://www.stackoverflow.com].

To get you started, psiTurk provides a fully functioning example
experiment (Getting up and running with the basic Stroop task) that
you can use as a template for your own study. psiTurk also includes
a library of basic Javascript functions (psiTurk API) that you can
insert into your code to handle page transitions, load images, and
record data.

Getting psiTurk Installed on Your Computer

psiTurk can be installed on any modern computer which supports
Python (<= 2.7). However, currently psiTurk is not supported on
Windows (see below). It works well on most unix variants
including Mac OS X, BSD, and Linux. Installation is usually not
difficult.

When psiTurk is successfully installed, you will simply have a new
command line tool available called psiturk. The psiturk command
provides a number of functions to you including launching the server
and interacting with the Mechanical Turk and Amazon Web Services (AWS)
systems.

Installation requirements

Installation of psiTurk requires:

	A python installation (<= v2.7). We recommend the Enthought
python distribution [https://www.enthought.com/products/epd/free/]
on Mac OS X.

	The ``pip`` package manager. Directions on installing this are
given below.

	Access to a command line tool. (e.g., Terminal.app on Mac OS X)

	A web browser. A WebKit compatible browser such as FireFox,
Safari, or Chrome is recommended.

An additional requirement for actually using psiTurk to run experiments
is an Internet connected computer capable of receiving incoming requests.

Installation steps

To install the package there are two options currently. First, the
current stable release of psiTurk is hosted on the python package
index pypi [https://pypi.python.org/pypi]. As a result, it can
easily be installed as a standard python package using the python
package manager tool pip. Alternatively, you can install directly
from the development branch on
github [https://github.com/NYUCCL/psiTurk]. The following
instructions describe the general process. In addition, system specific
notes are provided below.

Install stable version via pypi

The easiest way to install psiTurk is via pip. Linux users will
likely prefer to install pip as described below.
Otherwise, If you don’t already have pip, you can install it by
typing the following in a terminal:

cd /tmp # Just to put us in a directory that will be cleaned up periodically
curl -O https://raw.githubusercontent.com/pypa/pip/develop/contrib/get-pip.py
python get-pip.py # If you get a permissions error, try typing sudo python get-pip.py

If you want a single system to run different versions of psiTurk
(or other python packages) on a per-experiment basis, follow the
Virtual Environment instructions below.

Once pip is installed, type into a terminal:

pip install psiturk

If this doesn’t work, try

sudo pip install psiturk

If the install was successful you will have a new command psiturk
available on your command line. You can check the location of this
command by typing

which psiturk

Install directly from github

You can also install the bleeding-edge development version directly
from github using pip. To install the latest stable branch follow
the instructions above to install pip and:

sudo pip install git+git://github.com/NYUCCL/psiTurk.git@master

If the install was successful you will have a new command psiturk
available on your command line. You can check the location of this command
by typing

which psiturk

Updating from a previous version

To avoid compatibility issues, if you upgrade from a previous version it
can be useful to first uninstall then reinstall psiTurk using the
following sequence of commands:

$ pip uninstall psiturk
$ git clone git@github.com:NYUCCL/psiTurk.git
$ cd psiTurk
$ sudo python setup.py install

Running inside a Virtual Environment

It can desirable to keep each of your experiments’ dependencies (python
and python package versions) isolated from each other. For example, if
you want to install the development version of psiTurk (as
described above) in one experiment,
but not all the others installed on your system, Virtual Environments [http://virtualenv.readthedocs.org/en/latest/] provide a solution.

You can install via pip:

sudo pip install virtualenv virtualenvwrapper

And then start a new shell session. This will install the virtualenv
tool as well as the supplementary virtualenvwrapper tools that make
working with virtualenvs easier. You create a virtual environment as
follows (if mkvirtualenv is not recognized follow the instructions
here [http://virtualenvwrapper.readthedocs.org/en/latest/install.html]) :

$ mkvirtualenv my-experiment

Running virtualenv with interpreter /usr/bin/python2
New python executable in my-experiment/bin/python2
Also creating executable in my-experiment/bin/python
Installing setuptools, pip...done.

Then, at any point in the future, to activate the virtual environment use the workon command

$ workon my-experiment
(my-experiment) $ which python python pip easy_install

~/.virtualenvs/my-experiment/bin/python
~/.virtualenvs/my-experiment/bin/pip
~/.virtualenvs/my-experiment/bin/easy_install

As you can see, when the environment is active, running python or pip
will run copies specific to your project. Any packages installed with
pip or easy_install will be installed inside your my-experiment
virtualenv rather than system-wide. Use the deactivate command to
leave the virtualenv.

System-specific notes

Mac OS X

Apple users will need to install a C compiler via XCode; to do so,
install XCode from the App store. Once you have downloaded it, install
the command line tools from the preferences menu as instructed
here [http://stackoverflow.com/a/9353468/62179]. For earlier
versions of Mac OS X (e.g., Snow Leopard) you may need to install XCode
using the installation disc that came with your computer. The command
line tools are an option during the installation process for these
systems.

Linux

psiTurk is relatively painless to install on most Linux systems
since all four of the requirements listed above come installed by
default in most distributions.

If you encounter install problems when installing using pip as above, a
likely cause is that you are missing the package from your distribution
that contains a needed header file. In this case, one way to troubleshoot
the problem is to do a web search for the name of your distribution and
the name of the missing header file (which often appears in the error text
produced by a failed pip install). That search will likely turn up the name of
the package for your distribution that supplies the needed header file.

As an example, before installing psiTurk on a minimal Debian 7 server
(such as the one provided by many server hosting companies) you will need
to install some additional packages, as illustrated by the following
example command:

aptitude install python-pip python-dev libncurses-dev

If you would like to use mysql as your backend database (which is optional, and can
be done at any time), further packages are needed. On a Debian system, they are:

aptitude install python-pymysql python-sqlalchemy libmysqlclient-dev

If you have additional specific issues, or if you can report the steps
needed to install psiTurk on a particular Linux distribution, please help
us update the documentation!

Windows

psiTurk is currently not supported on Windows. This is due to a
technical limitation in the ability to run server processes on Windows.
We currently recommend that Windows users try a cloud-based install such
as openshift [https://www.openshift.com].

Cloud-based install (experimental)

If your local computer does not support psiTurk is it still possible
to use the package by using a free hosting solution such as
openshift [https://www.openshift.com/]. Begin by creating an account
at http://openshift.redhat.com/ and download the command line tools at
https://www.openshift.com/developers/rhc-client-tools-install

Create a python-2.7 application and add a PostgreSQL cartridge to the
app

rhc app create psiturk python-2.7 postgresql-8.4 --from-code git://github.com/jbmartin/psiturk-on-openshift.git

or you can do this to watch the build

rhc app create -a psiturk -t python-2.7
rhc cartridge add -a psiturk20 postgresql-8.4

Add this upstream psiturk repo

cd psiturk
git remote add upstream -m master https://github.com/jbmartin/psiturk-on-openshift.git
git pull -s recursive -X theirs upstream master

Then push the repo upstream

git push

That’s it, you can now checkout your application at

http://psiturk-$YOURNAMESPACE.rhcloud.com

To access the your openshift hosted database run

rhc port forward -a psiturk

Connect to the database using your favorite SQL app, the PostgreSQL
Local specs, and your credentials.

Getting setup with Amazon Mechanical Turk

psiTurk is a system for interfacing with Amazon
Mechanical Turk. Thus, you need to create an account
on Amazon’s website in order to use it. There are a number
of steps involved here which have to do with signing up with Amazon.
Luckily they are a one-time process (possibly once for your
entire lab if everyone shares a single AWS account).

Creating an AWS account

Start by going to the Amazon Web Services page here [http://aws.amazon.com]. If you made a Mechanical Turk account prior to this, sign in to your account and may skip to the next paragraph. Otherwise, click the Sign Up button at the top.

[image: _images/docs_AWS_signup_button.png]
You should be redirected to a form asking for your contact information. Fill out the form and continue to the next section.

[image: _images/docs_AWS_form_contact_info.png]
Next, you will need you credit card and your phone. The form should now ask for your credit card information.

[image: _images/docs_AWS_form_credit_card.png]
If you do not see the forms to fill in your credit card information, go to the Payment Methods page either by clicking the link on the toolbar to the left or here [https://portal.aws.amazon.com/gp/aws/developer/account?ie=UTF8&action=payment-method]. Enter in your credit card information. (Amazon will only charge you, if you use their cloud services. Signing up for an account should not incur any charges.)

On the next page, you will be asked to enter your phone number. Have your phone nearby. After you put in your phone number the webpage will display a 4-digit pin code and Amazon will call you. Enter the pin on your phone’s keypad when prompted by the call.

[image: _images/docs_AWS_form_phone.png]
[image: _images/docs_AWS_form_pin.png]
Amazon will ask you to select a support plan. For the purposes of psiTurk, you only need the Basic(Free) plan. Click continue.

Your Amazon Web Service account should be set up now.

Obtaining AWS credentials

An AWS access key id and secret access key is required for posting new HITs to Mechanical Turk as well as monitoring existing HITs. If you created an AWS access key and did not save your secret access key, you will need to create a new access key. After April 21, 2014, AWS no longer allows users to retrieve their secret access key. Follow the steps below to create a new key.

You can create your keys after you open an Amazon Web Services account. Your keys can be generated in the AWS Management Console [https://console.aws.amazon.com/iam/home?#security_credential].

Click on the “Access Keys” tab. Your screen should look like this:

[image: _images/docs_AWS_credentials_page.png]
Press the “Create New Access Key” button to generate a set of access keys.

[image: _images/docs_AWS_credentials_create_button.png]
A popup window should appear on the screen to tell you that your access key has been created. Your access keys will appear in the popup box.

[image: _images/docs_AWS_credentials_created_popup.png]
If you do not see your access key, click the “Show Access Key” link in the popup box.

[image: _images/docs_AWS_credentials_show_button.png]
We recommend that you also download your access keys just in case. The “Download Key File” button will download the keys onto your computer in a CSV file.

[image: _images/docs_AWS_credentials_download_button.png]
The values of these keys need to be placed in your global ~/.psiturkconfig file. The file is by default located in your home directory
(see Configuration files for more info)

Note

If you are using IAM authentication, psiTurk requires that the AmazonMechanicalTurkFullAccess policy be added to the credentials it uses to connect to MTurk.
See here [http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/SetUp.html#create-iam-user-or-role] for how to set up an IAM user.

Creating an AMT Requester account

To use your AWS keys to interface with Amazon Mechanical Turk, you need to create a requester account.
Please see Amazon’s instructions [http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/SetUp.html] for this. In particular, it is necessary to at least once login to the requester site (http://requester.mturk.com) and also to at least once login to the sandbox requester site (https://requestersandbox.mturk.com), so that you can agree to the terms of service.

Linking funds

Under construction.

Additional instructions

Under construction.

Getting setup with psiturk.org

psiturk.org is a cloud-based system which provides
users with information about their hits (who has accepted
the hit, where they are located, etc…) and which
provides a SSL-signed secure Ad server (ensuring that
the majority of Workers can access your task). It is
offered as a free service to anyone who uses psiTurk.

Note

To do anything beyond local testing a psiturk.org
account is currently required.

Creating a psiturk.org account

The first step in using psiturk.org is to sign up with
your email address. A free account can be created at
https://psiturk.org/register.

Obtaining psiturk.org API credentials

To prevent your email and password from being
passed repeatedly over the Internet when using
psiturk.org, you access the psiturk.org API services
using an API key (similar to how you interface with
Amazon Mechanical Turk). To obtain your personal API keys
login to psiturk.org (https://psiturk.org/login).
On the main dashboard page, select the blue dropdown
menu on the top right hand side of the page (shows your
email address) and select “API Keys”.
Copy these keys into your ~/.psiturkconfig file.

[image: _images/docs_psiturk_api_keys.png]
At any time you can regenerate these keys on the same page by
pressing the “Regenerate API Keys” button.

[image: _images/docs_psiturk_regen_api_keys.png]
At that point any old keys will no longer work, and you will
need to update your ~/.psiturkconfig file again. This
way

psiturk.org Secure Ad Server

Participants recruited via Mechanical Turk first interact with your task via ads.
Ads are simply the digital version of hanging a poster or flyer around your university
building in order to recruit participants.
Technically, ads are snippets of HTML code that describe what your task is about
and what you’re offering for compensation. As a result, they are the front line for any
subject recruitment online. It’s easy to overlook the importance of a good ad, and making
that ad visible to as many participants as possible.

See also

	Getting setup with psiturk.org

	Use of the Secure Ad Server requires an account on psiturk.org.

Ads, Amazon Mechanical Turk, and the External HIT type

Any task (or HIT) which you deploy on your own server is listed using the
“external HIT” type (a special name that Amazon uses for tasks which are hosted on
external webservers). For these types of tasks, ads show up in users’ browsers as a
HTML document. Due to recent changes in browser security, if your HTML is not encrypted and signed using
an “official” SSL certificate (e.g., https://myschool.edu/myad.html works
and the certificate signing authority is official) then the ad won’t display to potential
participants at all!

There’s a good discussion of this issue here [http://wiki.bcs.rochester.edu/HlpLab/MTurkExperiments],
here [http://stackoverflow.com/questions/19801682/why-does-the-mturk-sandbox-only-display-my-hits-in-internet-explorer],
and on Amazon’s own website [https://www.mturk.com/mturk/help?helpPage=worker#when_mixed_mode].

This is crazy!

What’s worse is that many universities are not able to provide individuals with a signed SSL certificate.
If that is the case, you can’t really use the external HIT mechanism without getting an account on some web hosting site.

However, the psiturk Secure Ad Server solves this problem for all researchers.

[image: _images/server_animation_frame5.png]
Rather than getting your own signed certificate (a technically challenging process), when you use
psiTurk, you can host your ad with us via https://ad.psiturk.org [http://ad.psiturk.org/]
via a custom and unique URL made especially for you.
We have already gone through the steps of getting an official, signed SSL certificate so you don’t
have to! psiTurk posts your custom ad text with us, and then participants access your task
by first interacting with our secure server. We show them the ad, then forward them to you.
No hassle, more potential participants!

A full “visual explanation” of the Secure Ad Server is provided here [http://psiturk.org/ad_server].
Basically, you post the HTML of you “ad” to the psiturk.org cloud. Workers view the ad on the
cloud server and decide if they want to accpet. If so they are forwarded to your local server or
computer to complete the task.

Why use the psiturk.org Secure Ad Server?

As should be obvious, psiTurk already gets around a major technical hurdle for many scientists.
However, the psiTurk Secure Ad Server not only serves up your SSL-signed Ad, but also
provides you with some valuable data about people who view your HIT, people who accept it, and
what other task they have completed on the psiTurk meta-platform.
This can be very useful data. For example, when you use the psiTurk Ad server you can find
out if your participants have done a version of your experiment before!

The public API for this data is coming soon, but just know that when you host your Amazon Mechanical
Turk ads with us you are helping to build a valuable resource about which participants have done
which types of experiments. This can be used to help filter your data or prevent certain participants
from doing experiments for which they have already possibly been exposed to the important manipulation.

Sound great, how do I use it?

When you create a HIT from the command line in psiTurk your ad is posted to our servers.
We begin forwarding people to your website instantly.
You ad is never deleted (unless you want to delete it).
Soon, you will be able to access statistics about who view, accepted, and returned your HIT and what other tasks they have completed on psiTurk. We also have plans to enable alternative ways of
posting Ads to psiTurk including through a simple web interface. This would then
allow researchers using survey-type (via Google Forms or Qualtrics) to take
advantage of the features of the Secure Ad Server as well.

Sharing and replicating with the psiTurk.org Experiment Exchange

Under construction.

Quickstart

A simple quick start guide to running an
existing psiTurk experiment is hosted
here [http://psiturk.org/quick_start/].

Configuration Files

There are two types of configuration files for psiTurk.
Configuration files contain information needed to run an experiment
as well as options which control how psiTurk behaves.

The first file is a “global” configuration file and resides
in your home folder (~/.psiturkconfig). The second file is
a “local” configuration file and resides in the folder of
each experiment.

In general the “global” configuration file sets project-wide
configuration options (i.e., those you want set the same
for all the experiments or projects you are working on).
The “local” configuration file contains the unique settings for
individual experiments.

Note

In general, changes to either the local and global file
require restarting the server process as it may change
the behavior. Generally it is best to edit these files while
psiturk is not running, and then restart the command shell.

Global configuration file

The global configuration file resides in your
home folder in a “dot” file (/.psiturkconfig). This
file is created automatically either the first time you
run the psiturk command line tool or the first time
you run psiturk-setup-example. The default file looks
like this:

[AWS Access]
aws_access_key_id = YourAccessKeyId
aws_secret_access_key = YourSecretAccessKey
aws_region = us-east-1

[psiTurk Access]
psiturk_access_key_id = YourAccessKeyId
psiturk_secret_access_id = YourSecretAccessKey

Other options can be added if you would like those
to be global to all your projects. The default options
include your access credentials/API keys for
Amazon Web Services (and Mechanical Turk)
as well as psiturk.org.
You can learn how to obtain proper values for these
settings by following those links.

You can customize the location of this file to something
other than the ~ folder by setting the PSITURK_GLOBAL_CONFIG_LOCATION
in your shell environment.

Local configuration file

The local configuration file is specific to each
project and resides in a file called config.txt in the
top level of the project. Here is what config.txt
looks like for the default psiTurk stroop
project:

[HIT Configuration]
title = Stroop task
description = Judge the color of a series of words.
amt_keywords = Perception, Psychology
lifetime = 24
us_only = true
approve_requirement = 95
number_hits_approved = 0
require_master_workers = false
contact_email_on_error = youremail@gmail.com
ad_group = Default psiTurk Stroop Example
psiturk_keywords = stroop
organization_name = New Great University
browser_exclude_rule = MSIE, mobile, tablet
allow_repeats = false

[Database Parameters]
database_url = sqlite:///participants.db
table_name = turkdemo

[Server Parameters]
host = localhost
port = 22362
cutoff_time = 30
logfile = server.log
loglevel = 2
debug = true
login_username = examplename
login_pw = examplepassword
threads = auto
secret_key = 'this is my secret key which is hard to guess, i should change this'
#certfile = <path_to.crt>
#keyfile = <path_to.key>
#adserver_revproxy_host = www.location.of.your.revproxy.sans.protocol.com
#adserver_revproxy_port = 80 # defaults to 80
#server_timeout = 30

[Task Parameters]
experiment_code_version = 1.0
num_conds = 1
num_counters = 1

[Shell Parameters]
launch_in_sandbox_mode = true
#bonus_message = "Thanks for participating!"
use_psiturk_ad_server = true
ad_location = false

This file is divided into a few sections which are
described in detail. Each field is described by
name and includes in brackets the type of data it
expects.

Note

Any configuration option can actually be placed in either
the global or local configuration file. For example, if you
wanted to run different project from different AWS accounts, you
could add an [AWS access] section to move the local config.txt files and
have different values in different folders. Likewise, if you wanted
to have the same organization_name in all your experiments, you
could add a [HIT Configuration] section with an
organization_name field to your ~/.psiturkconfig file. Keep in
mind that settings in the local `config.txt` file always override
settings in the global `~/.psiturkconfig` file.

	HIT Configuration
	title [string]

	description [string]

	keywords [comma separated string]

	lifetime [integer]

	us_only [true | false]

	approve_requirement [integer]

	number_hits_approved [integer]

	require_master_workers [true | false]

	contact_email_on_error [string - valid email address]

	ad_group [string]

	psiturk_keywords [comma separated string]

	organization_name [string]

	browser_exclude_rule [comma separated string]

	allow_repeats [boolean]

	Database Parameters
	database_url [url string]

	table_name [string]

	Server Parameters
	host [string]

	port [integer]

	cutoff_time [integer]

	logfile [string]

	loglevel [integer]

	debug [true | false]

	login_username [string]

	login_pw [string]

	threads [auto | integer]

	certfile [string]

	keyfile [string]

	adserver_revproxy_host [string]

	adserver_revproxy_port [integer]
	server_timeout [integer]

	Task Parameters
	experiment_code_version [string]

	num_conds [integer]

	num_counters [integer]

	Shell Parameters
	launch_in_sandbox_mode [true | false]

	bonus_message [string]

	use_psiturk_ad_server [true | false]

	ad_location [false | string]

HIT Configuration

The HIT Configuration section contains details about
your Human Intelligence Task. An example looks
like this:

[HIT Configuration]
title = Stroop task
description = Judge the color of a series of words.
amt_keywords = Perception, Psychology
lifetime = 24
us_only = true
approve_requirement = 95
number_hits_approved = 0
require_master_workers = false
contact_email_on_error = youremail@gmail.com
ad_group = My research project
psiturk_keywords = stroop
organization_name = New Great University
browser_exclude_rule = MSIE, mobile, tablet
allow_repeats = false

title [string]

The title is the title of the task that will appear on the AMT
worker site. Workers often use these fields to
search for tasks. Thus making them descriptive and
informative is helpful.

description [string]

The description is the accompanying
text that appears on the AMT site. Workers often use these fields to
search for tasks. Thus making them descriptive and
informative is helpful.

keywords [comma separated string]

keywords Workers often use these fields to
search for tasks. Thus making them descriptive and
informative is helpful.

lifetime [integer]

The lifetime is how long your HIT remains visible to workers (in
hours). After the lifetime of the HIT elapses, the HIT no longer
appears in HIT searches, even if not all of the assignments for the
HIT have been accepted.

This is in contrast to the HIT duration, which specifies how long
workers have to complete your task, and which you provide at HIT
creation time. See the documentation on hit create for more details.

us_only [true | false]

us_only controls
if you want this HIT only to be available to US Workers. This is
not a failsafe restriction but works fairly well in practice.

approve_requirement [integer]

approve_requirement sets a qualification for what type of workers
you want to allow to perform your task. It is expressed as a
percentage of past HITs from a worker which were approved. Thus
95 means 95% of past tasks were successfully approved. You may want
to be careful with this as it tends to select more seasoned and
expert workers. This is desirable to avoid bots and scammers, but also
may exclude new sign-ups to the system.

number_hits_approved [integer]

number_hits_approved is important to use in conjunction with approved_requirement, because
mturk will default approve_requirement to 100% until a worker has at least 100 HITs approved.
Override that behavior by setting number_hits_approved to something like 100.

require_master_workers [true | false]

require_master_workers will make it so that only workers with the “Master” qualification
can take your study. See Who Are Amazon Mechanical Turk Masters? [https://requester.mturk.com/help/faq#what_are_masters]

Note: Master workers cost an extra 5%.

See also

The following options help configure the psiturk.org Secure Ad Server.

	Getting setup with psiturk.org

	How to get an account on psiturk.org.

	psiturk.org Secure Ad Server

	An overview of the purpose and features of the Secure Ad Server.

contact_email_on_error [string - valid email address]

contact_email_on_error is the email you would like to display to
workers in case there is an error in the task. Workers will often try
to contact you to explain what when want and request partial or full
payment for their time. Providing a email address that you monitor
regularly is important to being a good member of the AMT community.

ad_group [string]

ad_group is a unique string that describes your experiment.
All HITs and Ads with the same ad_group string will be grouped together
in your psiturk.org dashboard. To create a new group in your dashboard
simply create a new unique string. The best practice is to group all
experiments from the same “project” with the same ad_group but assign
different ad_group identifiers to different project (e.g., if two
students in a lab were working on different things but shared a psiturk.org
account then they might use different ad_group identifiers to keep
things organized.)

psiturk_keywords [comma separated string]

psiturk_keywords [string, comma separated] are a list of key words
that describe your task. The purpose of these keywords (distinct from
the keywords described above) is to help other researchers know
what your task involves. For example, you might include the keyword
deception if your experiment involves deception. If it involves a
common behavioral task like “trolly problems” you might include that
as well. In the future we hope to allow researchers to query information
about particular workers and task to find out if your participants
are naive to particular types of manipulations. You should be careful
not to include too general of terms here. For example, a researcher
might want to exclude people who in the past had participated in a
psychology study involving deception. They probably don’t care to
exclude people who did a “decision making task”. Thus, being specific
and using important keywords that are likely to be recognized by the
research community is the best approach. (Ask yourself, if I wanted
to exclude people who had done this study from a future study what
keywords would I search for.)

organization_name [string]

organization_name [string] is just an identifier of your academic
institution, business, or organization. It is used internally
by psiturk.org.

browser_exclude_rule [comma separated string]

browser_exclude_rule is a set of rules you can apply to exclude
particular web browsers from performing your task. When a users
contact the Secure Ad Server the server checks
to see if the User Agent reported by the browser matches any of the
terms in this string. It if does the worker is shown a message
indicating that their browser is incompatible with the task.

Matching works as follows. First the string is broken up
by the commas into sub-string. Then a string matching rule is
applied such that it counts as a match anytime a sub-string
exactly matches in the UserAgent string. For example, a user
agent string for Internet Explorer 10.0 on Mac OS X might looks like this:

Mozilla/5.0 (compatible; MSIE 10.0; Macintosh; Intel Mac OS X 10_7_3; Trident/6.0)

This browser could be excluded by including this full line (see this website [http://www.useragentstring.com/pages/Browserlist/] for a partial list of UserAgent strings). Also
“MSIE” would match this string or “Mozilla/5.0” or “Mac OS X” or “Trident”.
Thus you should be careful in applying these rules.

There are also a few special terms that apply to a cross section of browsers.
mobile will attempt to deny any browser for a mobile device (including
cell phone or tablet). This matching is not perfect but can be more general
since it would exclude mobile version of Chrome and Safari for instance.
tablet denys tablet based computers (but not phones). touchcapable would
try to exclude computers or browser with gesture or touch capabilities
(if this would be a problem for your experiment interface). pc denies
standard computers (sort of the opposite to the mobile and tablet exclusions).
Finally bot tries to exclude web spiders and non-browser agents like
the Unix curl command.

allow_repeats [boolean]

allow_repeats specifies whether participants may complete the experiment more
than once. If it is set to false (the default), then participants will be
blocked from completing the experiment more than once. If it is set to true,
then participants will be able to complete the experiment any number of times.

Note that this option does not affect the behavior when a participant starts
the experiment but the quits or refreshes the page. In those cases, they will
still be locked out, regardless of the setting of allow_repeats.

Database Parameters

The Database Parameter section contains details about
your database. An example looks like this:

[Database Parameters]
database_url = sqlite:///participants.db
table_name = turkdemo

See also

	Configuring Databases

	For details on how to set up different databases and
get your data back out.

	Recording Data

	For details on how to put data into your database.

database_url [url string]

database_url containes the location and access credentials
for your database (i.e., where you want the data from your
experiment to be saved).

To use a SQLLite data base, simply type the name of the
file:

database_url = sqlite:///participants.db

This example would write to a database file with the name
“participants.db” in the top-level directory of your experiment.

To use an existing MySQL database:

database_url = mysql://USERNAME:PASSWORD@HOSTNAME:PORT/DATABASE

where USERNAME and PASSWORD are your access credentials for
the database, HOSTNAME and is the DNS entry or IP address for the
database, PORT is the port number (standard is 3306) and DATABASE
is the name of the database on the server. It is wise to test
that you can connect to this url with a MySQL client prior to
launching.

table_name [string]

table_name specifies the table of the database you would like
to write to. IMPORTANT: psiTurk prevents the same worker
from performing as task by checking to see if the worker
appears in the current database table already. Thus, for a
single experiment (or sequence of related experiments) you want
to keep the table_name value the same. If you start a new
design where it not longer matters that someone has done a
previous version of the task, you can change the table_name
value and begin sorting the data into a new table.

Server Parameters

The Server Parameter section contains details about
your local web server process that you launch from the
command line. An example looks like this:

[Server Parameters]
host = 0.0.0.0
port = 22362
cutoff_time = 30
logfile = server.log
loglevel = 2
debug = true
login_username = examplename
login_pw = examplepassword
threads = auto
#certfile = <path_to.crt>
#keyfile = <path_to.key>
#adserver_revproxy_host = www.location.of.your.revproxy.sans.protocol.com
#adserver_revproxy_port = 80
#server_timeout = 30

host [string]

host specifies the hostname of your server.
There are really only two meaningful values of this.
If host is set to ‘localhost’ or ‘127.0.0.1’ then your
experiment will only work for testing (i.e., even if you
have an internet addressable computer, people outside
of your local machine will not be able to connect). This
is a security feature for developing and testing your
application.

If host is set to 0.0.0.0 or the actual ip address
or hostname of your current computer then your task
will be available to the general internet.

port [integer]

This is the port that your server will run on. Typically
a number greater than 5000 will work. If another process
is already using a given port you will usually get an
error message.

cutoff_time [integer]

Maximum time in minutes to finish the task. The connection
will be closed after this time is up.

logfile [string]

The location of the server log file. Error messages for
the server process are not printed to the terminal or
command line. To help in debugging they are stored in
a log file of your choosing. This file will be located
in the top-level folder of your project.

loglevel [integer]

Sets how “verbose” the log messages are. See
the python logging [http://docs.python.org/2/library/logging.html#logging-levels]
library.

debug [true | false]

If debug is true, if there is an internal server error
helpful debugging information will be printed into the webpage of
people taking the experiment. IMPORANT this should be
set to false for live experiments to prevent possible security
holes.

login_username [string]

If you want to have custom-login section of your
web application (e.g., see customizing psiturk)
then you can set a login and password on certain
web pages urls/routes. By default if you aren’t
using them, this is ignored.

login_pw [string]

If you want to have custom-login section of your
web application (e.g., see customizing psiturk)
then you can set a login and password on certain
web pages urls/routes. By default if you aren’t
using them, this is ignored.

threads [auto | integer]

threads controls the number of process threads
the the psiturk webserver will run. This enables multiple
simultanous connections from internet users. If you select
auto it will set this based on the number of processor
cores on your current computer.

certfile [string]

Warning

SSL support for the psiturk server is an experimental feature.

certfile should be the /path/to/your/domain/SSL.crt

If both certfile and keyfile are set and the files readable, then
the psiturk gunicorn server will run with ssl. You will need
to execute the psiturk with privileges sufficient to read
the keyfile (typically root). If you run psiturk with sudo and if you are using
a virtual environment, make sure to execute the full path to the desired psiturk instance in your environment.

If you want to do this, you are responsible for obtaining
your own cert and key. It is not necessary to run the
psiturk server with ssl in order to use your own ad server.
You can have a proxy server such as nginx in front of
psiturk/gunicorn which handles ssl connections. See this gist [https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59] for an example. However, if you configure the psiturk server to run with SSL by setting the `certfile` and `keyfile` here, you must use a proxy server in front of psiturk to serve the content in your /static folder. An SSL-enabled psiturk/gunicorn server will not serve static content – it will only serve dynamic content.

See http://docs.gunicorn.org/en/stable/deploy.html for more information on setting up proxy servers with the psiturk (gunicorn) server.

See also

	use_psiturk_ad_server

	How to use your own ad_location. Does not require that the psiTurk server be SSL-enabled. (Although you will still need your own SSL certificate and key)

keyfile [string]

Warning

SSL support for the psiturk server is an experimental feature.

certfile should be the /path/to/your/domain/private-SSL.key. Although .crts can contain .key files within them,
psiturk currently requires that you point to separate .crt and .key files for this experimental feature to work.

See the documentation for certfile for more information.

adserver_revproxy_host [string]

Normally when you create an ad on the psiturk ad server (hit create…), your external ip address is
fetched and combined with the port that your psiturk gunicorn server is running on (the same port set in your config.txt). The psiTurk ad server directs all traffic directly to the psiturk gunicorn server.

If you want to put a reverse proxy in front of the psiturk gunicorn server (such as apache or nginx),
set the hostname or ip address of the reverse proxy
here. Set it even if it’s the same as your external ip. Leave the protocol off (i.e., don’t add http:// to the front).
(The psiturk ad server will add http:// to the front of whatever you set here.)

If your reverse proxy port is different from 80, set it in adserver_revproxy_port.

Note

If you want to host your own ad, see the documentation for use_psiturk_ad_server and ad_location. The adserver_revproxy_host and adserver_revproxy_port settings are only used if you are using the
psiTurk ad server.

See also

	use_psiturk_ad_server

	ad_location

adserver_revproxy_port [integer]

Defaults to port 80 (the standard http port).

See the documentation for adserver_revproxy_port for more information.

Note

If you are hosting your experiment on rhcloud.com, this setting is ignored and 80 will always be used.

server_timeout [integer]

Number of seconds gunicorn will wait before killing an unresponsive worker. This timeout applies to any individual request.

If you expect that your experiment may take more than 30 seconds to respond to a request, you may want to increase this.

Defaults to 30 seconds.

Note

See http://docs.gunicorn.org/en/stable/settings.html#timeout for more information.

Task Parameters

The Task Parameters section contains details about
your task. An example looks like this:

[Task Parameters]
experiment_code_version = 1.0
num_conds = 1
num_counters = 1

experiment_code_version [string]

Often you might run a couple different versions
of an experiment during a research project (e.g.,
Experiment 1 and 2 of a paper).
experiment_code_version is a string which is written into
the database along with your data helping you remember which
version of the code each participant was given.

This variable is used by the server along with num_conds and num_counters to ensure an equal number of workers per condition for the current experiment_code_version. In other words, changing the experiment_code_version resets the number of workers per condition to [0 0].

num_conds [integer]

psiTurk includes a primitive system for counterbalancing
participants to conditions. If you specify a number of
condition greater than 1, then psiTurk will attempt to
assign new participants to conditions to keep them all
with equal N. It also takes into account the time delay
between a person being assigned to a condition and completing
a condition (or possibly withdrawing). Thus, you can be
fairly assured that after running 100 subjects in two conditions
each condition will have 50+/- completed participants.

Note

If you want to reset the random assignment when changing num_conds, update the experiment_code_version.

num_counters [integer]

num_counters is identical to num_cond but provides
an additional counterbalancing factor beyond condition.
If num_counters is greater than 1 then psiTurk
behaves as if there are num_cond*num_counters conditions
and assigns subjects randomly to the the expanded design.
See Issue #53 [https://github.com/NYUCCL/psiTurk/issues/53]
for more info.

Shell Parameters

The Shell Parameters section contains details about
the psiturk shell.

[Shell Parameters]
launch_in_sandbox_mode = true
bonus_message = "Thanks for participating!"
use_psiturk_ad_server = true
ad_location = false

launch_in_sandbox_mode [true | false]

If set to true, the psiturk shell will launch in sandbox mode. if set to
false, the shell will launch in live mode. We recommend leaving this option
to true to lessen the chance of accidentally posting a live HIT to mTurk.

See also

	Overview of the command-line interface

	The basic features of the psiTurk command line.

bonus_message [string]

If set to a string, automatically uses this string as the message to
participants when bonusing them for an assignment. If not set, you will be
prompted to type in a message each time you bonus participants. (This message is
required by AMT.)

use_psiturk_ad_server [true | false]

Warning

Non-use of the psiturk ad server is an experimental feature.

If set to true, then the psiTurk secure ad server functionality will be enabled,
and your ad will be hosted on psiturk.org when creating hits on AMT.

If you want to host your own ad, then set this to false. You are responsible for obtaining
your own cert and key and for configuring your own proxy server in front
of psiturk/gunicorn. It is not necessary to also include the cert and key
in the [Server Parameters] section – you can have a proxy server
such as nginx in front of psiturk/gunicorn which handles SSL connections.
Although if you don’t have your SSL certs in both places, then traffic between
your proxy server and psiturk/gunicorn will not be encrypted. Perhaps that
doesn’t matter to you though if you configure your proxy server to pass traffic
to your gunicorn/psiturk server via localhost.

If set to false then you must also specify your custom ad_location (see below).

See also

See the [Server Parameters] certfile and keyfile configs
for ssl-enabling the psiturk server (although this is not required to use your
own ad location).

See also

See this gist [https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59] for an example nginx psiturk SSL configuration

ad_location [false | string]

Warning

Non-use of the psiturk ad server is an experimental feature.

ad_location is only used if use_psiturk_ad_server is false.
Set to whatever you set up your proxy server to listen on. This will be sent directly
to AMT when creating your HITs to tell AMT where to look for your ad.

Format is as follows:

https://<host>:<port>/ad

Some gotcha’s:

	don’t forget the /ad at the end. And don’t append a trailing backslash.

	you must use https:// or AMT will explode.

	the <port> should be the port your proxy server (such as nginx) is running on, not the psiturk port. See the gist [https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59] for a full example.

See also

See the information for the use_psiturk_ad_server configuration above as well.

Command-line Interface

The psiTurk shell is a simple, interactive command line interface which
allows users to communicate with Amazon Mechanical Turk, psiturk.org, and their
own experiment servers.

	Starting the psiTurk shell
	Usage

	Options

	The psiTurk shell prompt
	Server field

	Mode field

	#HITs field

	amt_balance command
	Usage

	Example

	config command + subcommands
	Description

	config print

	config reload

	config help

	db command + subcommands
	db get_config

	db use_local_file

	db use_aws_instance

	db aws_list_regions

	db aws_get_region

	db aws_set_region

	db aws_list_instances

	db aws_create_instance

	db aws_delete_instance

	debug command
	Usage

	download_datafiles command
	Usage

	help command
	Usage

	Examples

	hit command + subcommands
	Description

	hit create

	hit extend

	hit expire

	hit dispose

	hit list

	psiturk_status command
	Usage

	Example

	quit command
	Usage

	Example

	server command + subcommands
	Description

	server on

	server off

	server restart

	server log

	status command
	Usage

	Example

	mode command
	Usage

	Examples

	worker command + subcommands
	Description

	worker approve

	worker reject

	worker unreject

	worker bonus

	worker list

Starting the psiTurk shell

Usage

The psiTurk shell can be launched from any psiTurk project folder (i.e., any
folder with a config.txt file) by entering the command

psiturk

in the terminal.

Options

-v, --version

Print the currently installed version of psiTurk and exit.

-c, --cabinmode

Launch psiturk in cabin (offline) mode. This allows you to develop test
experiments locally without an internet connection. Cabin mode offers only
limited functionality, and lacks the amt, db, hit, mode, and
worker commands.

-s, --script <filename>

Run a list of commands from a text file, then exit. Each line in the file is
treated as a command.

The psiTurk shell prompt

The psiTurk shell prompt looks something like this:

[psiTurk server:off mode:sdbx #HITs:0]$

and contains several pieces of useful information.

Server field

The server field will generally be set to on or off and denotes
whether the experiment server is running. If the server field says
unknown, this likely means that a server process is running from an
improperly closed previous psiTurk shell session. In this case, you may need to
manually kill the processes in the terminal or restart your terminal session.

Mode field

The mode field displays the current mode of the shell. In the full psiturk
shell, the mode will be either sdbx (sandbox) or live. While in
cabin mode, the mode will be listed as cabin. More about the psiturk shell
mode can be found here.

#HITs field

The #HITs field displays the number of HITs currently active, either in the
worker sandbox when in sandbox mode or on the live AMT site when in live
mode. The #HITs field is not displayed in cabin mode.

amt_balance command

Usage

amt_balance

The amt_balance command displays your current AMT balance, or your worker sandbox balance (always $10,000.00) if you are in sandbox mode.

Example

Checking your balance in sandbox mode:

[psiTurk server:off mode:sdbx #HITs:1]$ amt_balance
$10,000.00

config command + subcommands

Contents

	config command + subcommands

	Description

	config print

	Example

	config reload

	Example

	config help

Description

The config command is used with a variety of subcommands to control the
current configuration context

config print

Prints the current configuration context (both local and global config options).

See also

	Configuration files

	More info about the global and local configuration files.

Example

[psiTurk server:off mode:sdbx #HITs:0]$ config print
 [AWS Access]
 aws_region=us-east-1
 aws_access_key_id=XXXXXX
 aws_secret_access_key=XXXX
 ...
 [Shell Parameters]
 launch_in_sandbox_mode=true
[psiTurk server:on mode:sdbx #HITs:0]$

config reload

Reloads the current config context (both local and global files). This will
cause the server to restart.

Example

[psiTurk server:on mode:sdbx #HITs:0]$ config reload
 Reloading configuration requires the server to restart. Really reload? y or n: y
 Shutting down experiment server at pid 82701...
 Please wait. This could take a few seconds.
 Experiment server launching...
 Now serving on http://localhost:22362
[psiTurk server:off mode:sdbx #HITs:0]$

config help

Display a help message concerning the config subcommand.

db command + subcommands

Contents

	db command + subcommands

	db get_config

	Usage

	Example

	db use_local_file

	Usage

	Example

	db use_aws_instance

	Usage

	Example

	db aws_list_regions

	Usage

	Example

	db aws_get_region

	Usage

	Example

	db aws_set_region

	Usage

	Example

	db aws_list_instances

	Usage

	Example

	db aws_create_instance

	Usage

	Example

	db aws_delete_instance

	Usage

	Example

The db command is used with a number of subcommands to create and configure database
instances. More information about database configuration can be found
on the Configuring Databases page.

Note

The aws_ subcommands are used to interact with the Amazon Web
Services Relational Database Server (RDS) cloud service.

db get_config

Usage

db get_config

Display the current setting of the database (database_url).

Example

[psiTurk server:off mode:sdbx #HITs:1]$ db get_config
Current database setting (database_url):
 sqlite:///participants.db

db use_local_file

Usage

db use_local_file [<filename>]

Switch the current database to a local SQLite file with name <filename>
(default is participants.db), or enter without filename and provide
name when prompted.

Example

Setting database to a local SQLite file:

[psiTurk server:off mode:sdbx #HITs:1]$ db use_local_file
Enter the filename of the local SQLLite database you would like to use [default=participants.db]: example.db
Updated database setting (database_url):
 sqlite:///example.db
[psiTurk server:off mode:sdbx #HITs:1]$

db use_aws_instance

Usage

db use_aws_instance [<instance_id>]

Switch the current database to a given instance <instance_id> on AWS
RDS. Enter without an argument to display a list of instances from
which to choose.

Example

Using an RDS database instance:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_aws_instance mydb
Switching your DB settings to use this instance. Are you sure you want to do this? y
enter the master password for this instance: PasswordXXXXX
AWS RDS database instance mydb selected.
Here are the available database tables
 myexp
Enter the name of the database you want to use or a new name to create a new one: myexp
Successfully set your current database (database_url) to
 mysql://UsernameXXXXX:PasswordXXXXX@mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.com:3306/myexp

db aws_list_regions

Usage

db aws_list_regions

Lists available AWS regions.

Example

psiTurk server:off mode:sdbx #HITs:1]$ db aws_list_regions
Avaliable AWS regions:
 us-east-1 (currently selected)
 us-gov-west-1
 eu-west-1
 us-west-1
 us-west-2
 sa-east-1
 ap-northeast-1
 ap-southeast-1
 ap-southeast-2

db aws_get_region

Usage

db aws_get_region

Displays the current AWS region you are communicating with.

Example

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_get_region
us-east-1

db aws_set_region

Usage

db aws_set_region [<region_name>]

Sets the AWS region you are currently using to <region-name>. Enter
without an argument to display a list of regions from which to choose.

Example

Setting region to us-west-1:

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_set_region us-west-1
Region updated to us-west-1

db aws_list_instances

Usage

db aws_list_instances

List instances and statuses in the current region/AWS account.

Example

	Listing instances when there are none active in your region:

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_list_instances
There are no DB instances associated with your AWS account in region us-east-1

	Listing instances when there is an active instance in your region:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-1

 Instance ID: mydb
 Status: available

db aws_create_instance

Usage

db aws_create_instance [<instance_id> <size> <username> <password>
<dbname>]

Create an RDS instance using MySQL on the AWS cloud, with the given
instance id, size, username, password, and database name. db
aws_create_instance can also be run interactively by running the
command without parameters.

Example

Interactively creating a database instance:

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_create_instance

Ok, here are the rules on creating instances:

instance id:
 Each instance needs an identifier. This is the name
 of the virtual machine created for you on AWS.
 Rules are 1-63 alphanumeric characters, first must
 be a letter, must be unique to this AWS account.

size:
 The maximum size of you database in GB. Enter an
 integer between 5-1024

master username:
 The username you will use to connect. Rules are
 1-16 alphanumeric characters, first must be a letter,
 cannot be a reserved MySQL word/phrase

master password:
 Rules are 8-41 alphanumeric characters

database name:
 The name for the first database on this instance. Rules are
 1-64 alphanumeric characters, cannot be a reserved MySQL word

enter an identifier for the instance (see rules above): mydb
size of db in GB (5-1024): 5
master username (see rules above): UsernameXXXXX
master password (see rules above): PasswordXXXXX
name for first database on this instance (see rules): myexp

 Creating AWS RDS MySQL Instance
 id: mydb
 size: 5 GB
 username: UsernameXXXXX
 password: PasswordXXXXX
 dbname: myexp
 type: MySQL/db.t1.micro

Be sure to store this information in a safe place.
Please wait 5-10 minutes while your database is created in the cloud.
You can run 'db aws_list_instances' to verify it was created (status
will say 'available' when it is ready
[psiTurk server:off mode:sdbx #HITs:1]$

db aws_delete_instance

Usage

db aws_delete_instance [<instance_id>]

Delete the RDS instance with id <instance_id>. Enter without an
argument to display a list of instances from which to choose.

Example

Deleting an AWS database instance:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_delete_instance
Here are the available instances you can delete:
 mydb (available)
Enter the instance identity you would like to delete: mydb
Deleting an instance will erase all your data associated with the
database in that instance. Really quit? y or n: y
DBInstance:mydb
AWS RDS database instance mydb deleted. Run `db aws_list_instances` for current status.

debug command

Usage

debug [options]

debug makes it possible to locally test your experiment without contacting Mechanical Turk servers. Type debug to automatically launch your experiment in a browser window. The server must be running to debug your experiment. When debugging, the server feature that prevents participants from reloading the experiment is disabled, allowing you to make changes to the experiment on the fly and reload the debugging window to see the results.

Options

-p, --print-only

Use the -p flag to print a URL to use for debugging the experiment, without attempting to automatically launch a browser. This is particularly useful if your experiment server is running remotely.

Example

Using the -p flag to request a debug link:

[psiTurk server:on mode:sdbx #HITs:0]$ debug -p
Here's your randomized debug link, feel free to request another:
http://localhost:22362/ad?assignmentId=debugDKSAAE&hitId=debug2YW8RI&workerId=debugM1QUH4
[psiTurk server:on mode:sdbx #HITs:0]$

download_datafiles command

Usage

download_datafiles

The download_datafiles command accesses the current experiment
database table (defined in config.txt) and creates a copy of the
experiment data in a csv format. download_datafiles creates three
files in your current folder:

eventdata.csv

eventdata.csv contains events such as window-resizing, and is
formatted as follows:

	column 1

	column 2

	column 3

	column 4

	column 5

	unique user ID

	event type

	interval

	value

	time

questiondata.csv

questiondata.csv contains data recorded with
psiturk.recordUnstructuredData(), and is
formatted as follows:

	column 1

	column 2

	column 3

	unique user ID

	question name

	response

trialdata.csv

trialdata.csv contains data recorded with psiturk.recordTrialData(), and is formatted as follows:

	column 1

	column 2

	column 3

	column 4

	unique user ID

	trial #

	time

	trial data

Note

More information about how to record different types of data in an
experiment can be found <here.

help command

Usage

help
help <command>

The help command displays a list of valid psiturk shell commands. Entering help followed by the name of a command brings up information about that command.

Examples

	List all commands:

[psiTurk server:on mode:sdbx #HITs:0]$ help

psiTurk command help:
=====================
amt_balance debug mode server
config download_datafiles open setup_example version
db hit psiturk_status status worker

basic CMD command help:
=======================
EOF ed help li py run shortcuts
_load edit hi list q save show
_relative_load eof history load quit set
cmdenvironment exit l pause r shell

psiTurk commands are listed first, followed by commands inherited from the
python cmd2 module. More information about cmd2 commands can be found
here [http://pythonhosted.org/cmd2/index.html].

	View the help menu for a command and its subcommands:

[psiTurk server:on mode:sdbx #HITs:0]$ help server

	Usage:

	server on
server off
server restart
server log
server help

	‘server’ is used with the following subcommands:

	on Start server. Will not work if server is already running.
off Stop server. May take several seconds.
restart Run ‘server off’, followed by ‘server on’.
log Open live server log in a separate window.
help Display this screen.

Note

With commands with subcommands such as server,
you can also view the help screen by entering <command> help. For
example, server help has the same effect at help server.

hit command + subcommands

Contents

	hit command + subcommands

	Description

	hit create

	Usage

	Example

	hit extend

	Usage

	Example

	hit expire

	Usage

	Example

	hit dispose

	Usage

	Example

	hit list

	Usage

	Examples

Description

The hit command is used to create, view, delete, and modify Human Intelligence Tasks (“HITs”) on Amazon Mechanical Turk.

hit create

Usage

hit create [<numWorkers> <reward> < duration>]

Create a HIT with the specified number of assignments, reward amount, and
duration. Will be posted either live to AMT or to the Worker Sandbox depending
upon your current mode. hit create can also be run interactively by
entering the command without parameters.

The duration specifies how long a worker can “hold on” to your HIT (in hours or hours.<fraction_of_hour>). This should be long enough for workers to actually
complete your HIT, but sometimes workers will “accept” a HIT which is
worth a lot of money but come back and do the work later in the
day. You can specify a shorter duration if you want workers to
complete your HIT immediately.

Example

Creating a HIT in the sandbox with three assignments that pays $2.00 and has a
1.5 hour time limit:

[psiTurk server:on mode:sdbx #HITs:0]$ hit create 3 2.00 1.5

 Creating sandbox HIT
 HITid: 2XE40SPW1INMXUF9OJUNDB6BT8W2F4
 Max workers: 3
 Reward: $2.00
 Duration: 1.5 hours
 Fee: $0.60

 Total: $6.60
 Ad for this HIT now hosted at: https://ad.psiturk.org/view/Q3HWnfqzg3MP9VDbu3kFyn?assignmentId=debugJCI80S&hitId=debug9AWC90
[psiTurk server:on mode:sdbx #HITs:1]$

hit extend

Usage

hit extend <HITid> [--assignments <number>] [--expiration <time>]

Extend an existing HIT by increasing the amount of time before the HIT expires
(and and is no longer available to workers) or by increasing the number of
workers who can complete the HIT.

Example

Adding both time and assignments to a HIT:

psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task
 Status: Assignable
 HITid: 2776AUC26DG6NRIGNVRFN0COYO0B4R
 max:3/pending:0/complete:0/remain:3
 Created:2014-03-07T21:36:33Z
 Expires:2014-03-08T21:36:33Z

[psiTurk server:on mode:sdbx #HITs:1]$ hit extend 2776AUC26DG6NRIGNVRFN0COYO0B4R --assignments 10 --expiration 12
HIT extended.
[psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task
 Status: Assignable
 HITid: 2776AUC26DG6NRIGNVRFN0COYO0B4R
 max:13/pending:0/complete:0/remain:13
 Created:2014-03-07T21:36:33Z
 Expires:2014-03-08T21:48:33Z

Note that both the remaining number of assignments and the expiration time of
the HIT have increased. One can also increase the number of assignments or the
expiration independently.

hit expire

Usage

hit expire (--all | <HITid> ...)

Expire one or more existing HITs, or expire all HITs using the --all
flag.

Example

	Expiring two HITs at once:

[psiTurk server:on mode:sdbx #HITs:4]$ hit expire 2Y0T3HVWAVKIMG42A2S75Z9943NNFG 2RVZXR24SMEZFG314ME9X8P9CPPH0X
expiring sandbox HIT 2Y0T3HVWAVKIMG42A2S75Z9943NNFG
expiring sandbox HIT 2RVZXR24SMEZFG314ME9X8P9CPPH0X
[psiTurk server:on mode:sdbx #HITs:2]$

	Expiring all active HITs:

[psiTurk server:on mode:sdbx #HITs:2]$ hit expire --all
expiring sandbox HIT 2776AUC26DG6NRIGNVRFN0COYO0B4R
expiring sandbox HIT 2VUWA6X3YOCCVET8PKOPWINIWJFPO0
[psiTurk server:on mode:sdbx #HITs:0]$

hit dispose

Usage

hit dispose (--all | <HITid>)

Dispose of one ore more HITs, or dispose of all HITs using the --all flag.

Note

To dispose of a HIT, it must not be active or have any unreviewed
assignments

Example

[psiTurk server:off mode:sdbx #HITs:0]$ hit dispose 241KM05BMJTUXCDL0TG9UA7SJI3JEQ
deleting sandbox HIT 241KM05BMJTUXCDL0TG9UA7SJI3JEQ
[psiTurk server:off mode:sdbx #HITs:0]$

hit list

Usage

hit list [--active | --reviewable]

List all HITs, or list all active or reviewable HITs using the provided flags.

Examples

	List all active HITs:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task
 Status: Assignable
 HITid: 2ZFKO2L92HECCONGNYFCFF0C3R2FG1
 max:1/pending:0/complete:0/remain:1
 Created:2014-03-07T22:10:01Z
 Expires:2014-03-08T22:10:01Z

[psiTurk server:on mode:sdbx #HITs:1]$

	List all HITs:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list
Face Discrimination (5 - 10 minutes, up to $1.0 bonus!!)
 Status: Reviewable
 HITid: 2ZRNZW6HEZ6OUI7FRTZ6CGUMGIQPZ0
 max:1/pending:0/complete:0/remain:0
 Created:2014-03-03T23:53:08Z
 Expires:2014-03-04T23:53:08Z

Stroop task
 Status: Assignable
 HITid: 2ZFKO2L92HECCONGNYFCFF0C3R2FG1
 max:1/pending:0/complete:0/remain:1
 Created:2014-03-07T22:10:01Z
 Expires:2014-03-08T22:10:01Z

[psiTurk server:on mode:sdbx #HITs:1]$

psiturk_status command

Usage

psiturk_status

Display startup screen with message from psiturk.org [http://psiturk.org].

Example

[psiTurk server:off mode:sdbx #HITs:1]$ psiturk_status

http://psiturk.org
 ______ ______ __ ______ __ __ ______ __ __
/\ == \ /\ ___\ /\ \ /__ _\ /\ \/\ \ /\ == \ /\ \/ /
\ \ _-/ \ ___ \ \ \ \ \/_/\ \/ \ \ _\ \ \ \ __< \ \ _"-.
 \ _\ \/_____\ \ _\ \ _\ \ _____\ \ _\ _\ \ _\ _\
 \/_/ \/_____/ \/_/ \/_/ \/_____/ \/_/ /_/ \/_/\/_/

 an open platform for science on Amazon Mechanical Turk

--
System status:
Hi all, You need to be running psiTurk version >= 1.0.5dev to use the
Ad Server feature!

Check https://github.com/NYUCCL/psiTurk or http://psiturk.org for
latest info.
psiTurk version 1.0.8dev
Type "help" for more information.
[psiTurk server:off mode:sdbx #HITs:1]$

quit command

Usage

quit

The quit command quits the psiTurk shell. If you have a server running,
psiTurk will confirm that you want to quit before exiting, since quitting
psiTurk turns off the server.

Example

Quitting psiTurk with the server running:

[psiTurk server:on mode:sdbx #HITs:0]$ quit
Quitting shell will shut down experiment server. Really quit? y or n: y
Shutting down experiment server at pid 40182...
Please wait. This could take a few seconds.
$

server command + subcommands

Contents

	server command + subcommands

	Description

	server on

	Example

	server off

	Example

	server restart

	server log

Description

The server command is used with a variety of subcommands to control the
experiment server.

server on

Start the experiment server.

Example

[psiTurk server:off mode:sdbx #HITs:0]$ server on
Experiment server launching...
Now serving on http://localhost:22362
[psiTurk server:on mode:sdbx #HITs:0]$

server off

Shut down the experiment server.

Example

[psiTurk server:on mode:sdbx #HITs:0]$ server off
Shutting down experiment server at pid 32911...
Please wait. This could take a few seconds.
[psiTurk server:off mode:sdbx #HITs:0]$

server restart

Runs server off, followed by server on.

server log

Opens the server log in a separate window. Uses Console.app on Max OS X and
xterm on other systems.

status command

Usage

status

The status command updates and displays the server status and
number of HITs available on AMT or in the worker sandbox.

Note

This information is also displayed in the psiTurk shell prompt, but
#HITs is not updated after every command (as every update
requires contacting the AMT server). status provides a
way to make sure the prompt is up-to-date.

Example

Using the status command in sandbox mode:

[psiTurk server:off mode:sdbx #HITs:1]$ status
Server: currently offline
AMT worker site - sandbox: 1 HITs available

mode command

Usage

mode
mode <which>

The mode command controls the current mode of the psiTurk shell. Type
mode live or mode sandbox to switch to either mode, or simply mode
to switch to the opposite mode. The current mode affects almost every psiturk
shell command. For example, running hit create while in sandbox mode will
create a HIT in the sandbox, while running it in live mode will create a HIT on
the live AMT site. Similarly, commands like worker list all or hit list
all will list assignments and HITs from either the live site or the sandbox,
depending on your mode.

Note

Switching the psiturk shell mode while the server is running requires the
server to restart, since at the end of the experiment participants need to
be correctly redirected back to either the live AMT site or the
sandbox. Therefore, you should not change modes while you are serving a
live HIT to workers.

Examples

	Switching mode, with and without <which> specifier:

[psiTurk server:off mode:sdbx #HITs:0]$ mode
Entered live mode
[psiTurk server:off mode:live #HITs:0]$ mode sandbox
Entered sandbox mode
[psiTurk server:off mode:sdbx #HITs:0]$

	Switching mode with the server running:

[psiTurk server:on mode:sdbx #HITs:0]$ mode
Switching modes requires the server to restart. Really switch modes? y or n: y
Entered live mode
Shutting down experiment server at pid 33447...
Please wait. This could take a few seconds.
Experiment server launching...
Now serving on http://localhost:22362
[psiTurk server:on mode:live #HITs:0]$

Type n instead to abort the mode switch harmlessly.

worker command + subcommands

Contents

	worker command + subcommands

	Description

	worker approve

	Usage

	Example

	worker reject

	Usage

	Example

	worker unreject

	Usage

	Example

	worker bonus

	Usage

	Examples

	worker list

	Usage

	Examples

Description

The worker command is used to list, approve and reject, and bonus worker
assignments on Amazon mechanical Turk.

worker approve

Usage

worker approve (--hit <hit_id> | <assignment_id> ...)

Approve worker assignments for one or more assignment ID’s, or use the
--hit flag to approve all workers for a specific HIT.

Example

	Approve a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker approve 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
approved 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

	Approve all assignments for a given hit:

[psiTurk server:on mode:sdbx #HITs:0]$ worker approve --hit 2QKHECWA6X3Y4QTYKCG5NXPTWYGMLF
approving workers for HIT 2QKHECWA6X3Y4QTYKCG5NXPTWYGMLF
approved 2MB011K274J7PY7FQ1ZN76UXH0ECED
approved 2UO4ZMAZHHRR1T7J8NEVUH1KJCAKBY

worker reject

Usage

worker reject (--hit <hit_id> | <assignment_id> ...)

Reject worker assignments for one or more assignment ID’s, or use the --hit
flag to reject all workers for a specific HIT.

Example

Reject a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker reject 2Y9OVR14IXKOIZQL1E3WD6X30CD98U
rejected 2Y9OVR14IXKOIZQL1E3WD6X30CD98U

worker unreject

Usage

worker unreject (--hit <hit_id> | <assignment_id> ...)

Unreject worker assignments for one or more assignment ID’s, or use the
--hit flag to unreject all workers for a specific HIT.

Note

Unrejecting an assignment automatically approves that assignment.

Example

Unreject a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker unreject 2Y9OVR14IXKOIZQL1E3WD6X30CD98U
unrejected 2Y9OVR14IXKOIZQL1E3WD6X30CD98U

worker bonus

Usage

worker bonus (--amount <amount> | --auto) (--hit <hit_id> | <assignment_id> ...)

Grant bonuses to workers for one or more assignment ID’s, or use the --hit
flag to bonus all workers for a specific HIT.

Enter the bonus --amount <amount> in an X.XX format, or use the --auto
flag to bonus each worker according to the ‘bonus’ field of hte database
(requires a custom bonus route in the experiment’s
custom.py file).

Upon running worker bonus, you will be asked to input a reason for the
bonus. This message will be displayed to workers who receive the bonus.

Note

You must approve the worker assignment before you grant a bonus.

Warning

While it isn’t possible to approve an assignment more than once, it is
possible to grant a bonus repeatedly. When running worker bonus with the
--hit flag, only workers who have not yet received a bonus for the
assignment will be bonused. However, when running worker bonus on
individual assignments the worker will be bonused regardless of whether they
have already received one.

Examples

	Bonusing an individual assignment. The bonus can be granted repeatedly,
making this risky:

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
Type the reason for the bonus. Workers will see this message: Here's a bonus!
gave bonus of $2.00 to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
Type the reason for the bonus. Workers will see this message: Here's another one!
gave bonus of $2.00 to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

	Say there are approved assignments for a HIT, one already bonused, one not yet
bonused. Bonusing by HIT prevents repeated bonuses:

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00 --hit 2ECYT3DHJHP4RRU304P8USX9BCXU1O
Type the reason for the bonus. Workers will see this message: you haven't been bonused yet. Here's a bonus!
bonusing workers for HIT 2ECYT3DHJHP4RRU304P8USX9BCXU1O
gave a bonus of $2.00 to 2MB011K274J7PY7FQ1ZN76UXH0ECED
bonus already awarded to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

	If a compute-bonus route exists in the experiment custom.py, we can also
use the --auto flag to automatically give each worker the correct
bonus:

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --auto --hit 2ECYT3DHJHP4RRU304P8USX9BCXU1O
Type the reason for the bonus. Workers will see this message: Thanks for moving science forward!
bonusing workers for HIT 2ZQIUB2YU98JX6A4V3C0IBJ9W0HL9P
gave a bonus of $3.00 to 27UQ45UUKQOYW1ZFLNJ8RG012VYDVP
gave a bonus of $2.50 to 24IIHPCGJ2D2H2KFPX80MPPSKQM933

Note

Unlike the commands to approve, reject, or unreject workers, the worker
bonus command requires the psiturk shell to be launched in the same
project as the HIT for which workers are being bonused, since the
information about which workers have been bonused is stored in the
experiment database.

worker list

Usage

worker list [--submitted | --approved | --rejected] [--hit <hit_id>]

List all worker assignments, or list worker assignments fitting a
given condition using the provided flags. Use the --hit flag to
list workers for a specific HIT.

Examples

	Listing all submitted workers:

[psiTurk server:on mode:sdbx #HITs:0]$ worker list --submitted
[
 {
 "status": "Submitted",
 "assignmentId": "2VQHVI44OS2K18PW7EQSEAP5DPV5ZY",
 "workerId": "A2O6BB9HXEUXX1",
 "submit_time": "2014-03-04T16:14:32Z",
 "hitId": "2ZRNZW6HEZ6OUI7FRTZ6CGUMGIQPZ0",
 "accept_time": "2014-03-04T16:14:05Z"
 },
 {
 "status": "Submitted",
 "assignmentId": "2XB92NJKM05B2XAD1YN2JTP9TYXAFG",
 "workerId": "A2O6BB9HXEUXX1",
 "submit_time": "2014-03-03T23:35:17Z",
 "hitId": "2RWSCWY2AOO2W03X0OFGTSCMKZZ22I",
 "accept_time": "2014-03-03T23:34:19Z"
 }
]

	Listing approved workers for a specific HIT:

[psiTurk server:on mode:sdbx #HITs:0]$ worker list --approved --hit 2ECYT3DHJHP4RRU304P8USX9BCXU1O
listing workers for HIT 2ECYT3DHJHP4RRU304P8USX9BCXU1O
[
 {
 "status": "Approved",
 "assignmentId": "21A8IUB2YU98ZV9C5BUL3FBJB5B8K7",
 "workerId": "A2O6BB9HXEUXX1",
 "submit_time": "2014-02-26T03:26:55Z",
 "hitId": "2ECYT3DHJHP4RRU304P8USX9BCXU1O",
 "accept_time": "2014-02-26T03:26:36Z"
 }
]

Configuring Databases

Databases provide a critical aspect of psiTurk as they store data from experiments and help to prevent the same user from completing your experiment more than once. Databases provide an important function for web-based experiments. Because multiple
people can complete your experiment at the same time, you need a system which can simultaneously write/read data.
Databases are optimized for this type of environment and are thus very useful for experiments.

Databases can be configured via the command line or by editing the configuration files directly.
See the db command documentation for a full list of database commands available in the psiTurk shell. You can also view your current
database settings by typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config

in the command line shell.

See also

	Database parameters

	For details on how to configure databases in config.txt.

	Local configuration file

	For details on the local configuration file config.txt.

Using SQLite

Perhaps the simplest solution is to use SQLite. This is a simple, easy to use database solution that is written to a local file on the same computer as is running the psiTurk shell/server. By default psiTurk will use a local SQLite [http://www.sqlite.org/] database.

To use a SQLite data base, simply set the database_url field in your local configuration file (config.txt):

database_url = sqlite:///FILENAME.db

where FILENAME is of your choosing. By default, psiTurk sets this like this:

database_url = sqlite:///participants.db

This will make a SQLite database file in the top-level folder of your project. If you change the database_url
and restart psiTurk a new database corresponding to the new filename will be created. If you set it to an
existing file name, psiTurk will attempt to connect to this database.

You can also change this setting using the command line:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_local_file FILENAME.db

and verify the changes using:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config

It is best to do this while the server is not running (note in this example the “server” status says “off”).
If you change this while the server is running you will need to type:

[psiTurk server:on mode:sdbx #HITs:0]$ server restart

While great for debugging, SQLite has a number of important downsides for deploying experiments. In particular SQLite does not allow concurrent access to the database, so if the locks work properly, simultaneous access (say, from multiple users submitting their data at the same time) could destabilize your database. In the worst scenario, the database could become corrupted, resulting in data loss.

As a result, we recommend using a more robust database solution when actually running your experiment. Luckily, psiTurk can help you set up such a database (usually for free).

However, SQLite is a good solution particularly for initial testing. It is also possible to try to “throttle” the
rate of signups on Mechanical Turk (by only posting one assignment slot at a time) so that database errors are
less likely using SQLite.

Note

SQLite database are fine for local testing but more robust databases like MySQL are recommended especially
if you plan to run many participants simultaneously.

Using a self-hosted MySQL database (recommended)

A more robust solution is to set up a MySQL [http://www.mysql.com/] database. psiTurk relies on SQLAlchemy [http://www.sqlalchemy.org/] for interfacing with database which means it is easy to switch between MySQL, PostgreSQL, or SQLite. We recommend
MySQL because we have tested it, but other relational database engines may works as well.

To use an existing MySQL database:

database_url = mysql://USERNAME:PASSWORD@HOSTNAME:PORT/DATABASE

where USERNAME and PASSWORD are your access credentials for the database,
HOSTNAME is the DNS entry or IP address for the database, PORT is the port
number (standard is 3306) and DATABASE is the name of the database on the
server.

Use 127.0.0.1 as the HOSTNAME for a database running locally to the psiTurk
server rather than ‘localhost’. Mysql treats the HOSTNAME ‘localhost’ as a
special case in Unix-based systems [https://dev.mysql.com/doc/refman/5.0/en/connecting.html#idm140235558252992]
and will cause the psiTurk server to fail to boot.

It is wise to test that you can connect to this url with a MySQL client prior to
launching. Sequel Pro [http://www.sequelpro.com/] is a nice GUI database
client for MySQL for Mac OS X.

Here’s an example of setting up a minimal MySQL database for use with
psiTurk:

$ mysql -uroot -p
mysql> CREATE USER 'your_username'@'localhost' IDENTIFIED BY 'your_password';
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE DATABASE your_database;
Query OK, 1 row affected (0.01 sec)

mysql> GRANT ALL PRIVILEGES ON your_database.* TO 'your_username'@'localhost';
Query OK, 0 rows affected (0.00 sec)

where your_username, your_password and your_database match the USERNAME,
PASSWORD and DATABASE specified in config.txt’s database_url variable.

The table specified in config.txt, turkdemo by default

table_name = turkdemo

will be created automatically when running the psiturk shell.
MySQL is (fairly) easy to install and free. However, a variety of web hosting
services offer managed MySQL databases. Some are even
free [https://www.google.com/search?q=free+mysql+hosting]. Your university
may be able to provide this as well. MySQL is a very ubiquitous piece of software.

Obtaining a low-cost (or free) MySQL database on Amazon’s Web Services Cloud

While not terribly difficult, installing and mangaging a MySQL database can be
an extra hassle. Interestingly, when you sign up with Amazon Mechanical Turk
as a requester, you also are signing up for Amazon’s Web Services a very powerful
cloud-based computing platform that is used by many large web companies. One of
the services Amazon provides is a fully hosted relational database server (RDS) [http://aws.amazon.com/rds/].

According to Amazon, “Amazon Relational Database Service (Amazon RDS) is a web
service that makes it easy to set up, operate, and scale a relational database in
the cloud. It provides cost-efficient and resizable capacity while managing
time-consuming database administration tasks, freeing you up to focus on your
applications and business.”

Danger

If you use Amazon’s RDS to host your MySQL database you may incur additional
charges. At the present time a small RDS instance is free if you have
recently signed up for Amazon Web Services. However, older account have to
pay according to the current rates [http://aws.amazon.com/rds/pricing/].
This does NOT use the pre-paid mechanism that is used on Amazon
Mechanical Turk. Thus launching a database server on the cloud and leaving
it running run up monthly charges. You are responsible for launching
and shutting down your own database instances if you use this approach.
PROCEED WITH CAUTION.

The psiTurk command line provides a way to
create a small MySQL database on Amazon’s cloud using the RDS service.
The command for this are available under the db command. Type:

[psiTurk server:off mode:sdbx #HITs:0]$ db help

for a list of sub-commands. The commands that begin with aws_ directly
interface with the Amazon cloud.

Note

Of course, you must have valid AWS credentials to use this system. See
Getting setup with Amazon Mechanical Turk and
Global configuration file.

If you are using psiturk with an IAM user, and if you want to use AWS RDB services via psiturk,
add the AmazonRDSFullAccess AWS policy or an equivalent custom policy to your IAM user.
See AWS docs here [http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.AccessControl.IdentityBased.html#UsingWithRDS.IAM.AccessControl.ManagedPolicies].

AWS Regions

AWS divides their cloud into different “regions” based on the location of the
data center. To see a list of available regions type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_regions

This command will also show which region you are currently using. The
region is also set in your ~/.psiturkconfig Global configuration file.
You can also get the current region by typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_get_region

To change your region simply type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_set_region [<region_name>]

where region_name is one of the options listed by db aws_list_regions.

Why is this important? If you start an instance in one region, then switch regions,
it will not show up in your list anymore. The regions are sort of independent from
one another. Thus it is important to remember which region your instance was
started on (i.e., which data center).

Note

It is probably fine to just keep the region set to a single value
perhaps geographically closer to your location. This functionality is just
provided in case the default region isn’t working for you.

Creating an RDS Instance

After you have decided on a region, it is fairly easy to create a database instance.
Type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances

to see all available instances associated with your account in the current region.
If you haven’t created any instances in this region yet you should get a message like:

There are no DB instances associated with your AWS account in region us-east-1

To create a new instance use the db aws_create_instance command:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_create_instance [<instance_id> <size> <username> <password> <dbname>]

The optional arguments allow you to create the database in one command. If you
prefer you can use an interactive mode by just typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_create_instance

This will print the following message describing the various options you need
to specify for your database instance:

Ok, here are the rules on creating instances:

instance id:
 Each instance needs an identifier. This is the name
 of the virtual machine created for you on AWS.
 Rules are 1-63 alphanumeric characters, first must
 be a letter, must be unique to this AWS account.

size:
 The maximum size of you database in GB. Enter an
 integer between 5-1024

master username:
 The username you will use to connect. Rules are
 1-16 alphanumeric characters, first must be a letter,
 cannot be a reserved MySQL word/phrase

master password:
 Rules are 8-41 alphanumeric characters

database name:
 The name for the first database on this instance. Rules are
 1-64 alphanumeric characters, cannot be a reserved MySQL word

Then you will be prompted to specify values for these fields.
If you follow the rules correctly your command will execute successfully:

enter an identifier for the instance (see rules above): mydb
size of db in GB (5-1024): 5
master username (see rules above): UsernameXXXXX
master password (see rules above): PasswordXXXXX
name for first database on this instance (see rules): myexp

 Creating AWS RDS MySQL Instance
 id: mydb
 size: 5 GB
 username: UsernameXXXXX
 password: PasswordXXXXX
 dbname: myexp
 type: MySQL/db.t1.micro

 Be sure to store this information in a safe place.
 Please wait 5-10 minutes while your database is created in the cloud.
 You can run 'db aws_list_instances' to verify it was created (status
 will say 'available' when it is ready

The instructions mention that it can take a few minutes for you database to
“spin up”. If you run db aws_list_instances after a few minutes you should
now see your database in the cloud:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-1

 Instance ID: mydb
 Status: creating

Notice the status is “creating” (this means the database is not available yet). Just
wait a bit longer. It really can take 10-15 minutes! Other possible status messages
for an instance include backing-up (AWS automatically backs up your database in case
of data loss. At this time psiTurk does not help you access those backups, you’ll
have to do that from the AWS web console.)

When your database is ready the message from db aws_list_instances should look like:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-1

 Instance ID: mydb
 Status: available

If you have multiple instances they will also appear in this list.

Danger

Multiple instances increase the possible charges you’ll incur to Amazon since you are charged
per-instance.

Once your instance is created and “available” if you type db get_config you’ll
notice that your experiment is still configured to use whatever setting you had
previously:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config
Current database setting (database_url):
 sqlite:///participants.db

To actually use your instance you need to tell psiTurk which instance:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_aws_instance mydb
Switching your DB settings to use this instance. Are you sure you want to do this? y
enter the master password for this instance: PasswordXXXXX
AWS RDS database instance mydb selected.
Here are the available database tables
 myexp
Enter the name of the database you want to use or a new name to create a new one: myexp
Successfully set your current database (database_url) to
 mysql://UsernameXXXXX:PasswordXXXXX@mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.com:3306/myexp

And now your experiment will save data to this MySQL database in the Amazon cloud!
Notice that Amazon has assigned your computer a random looking hostname/ip (mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.com).
You can connect using any standard MySQL client (e.g., Sequel Pro [http://www.sequelpro.com/])
which is running on the same computer as you psiTurk process

Note

psiTurk automatically makes instances so that only the current computer’s ip address
can access the database for security reasons. To modify that you can use the Amazon Web
Services control panel or simple delete and spin up a new database instance.

To switch back to a local SQLite file:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_local_file FILENAME.db
Updated database setting (database_url):
 sqlite:///FILENAME.db

It is important that you delete your instance when you are finished using it.
Otherwise you will be charged (usually fractions of a penny per hour). Assuming
I wanted to delete my new mydb instance here is an example session:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-1

 Instance ID: mydb
 Status: available
[psiTurk server:off mode:sdbx #HITs:0]$ db aws_delete_instance
Here are the available instances you can delete:
 mydb (available)
Enter the instance identity you would like to delete: mydb
Deleting an instance will erase all your data associated with the database in that instance. Really quit? y or n: y
DBInstance:mydb
AWS RDS database instance mydb deleted. Run `db aws_list_instances` for current status.
[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-1

 Instance ID: mydb
 Status: deleting

After waiting a bit verify that you instance actually has been deleted:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
There are no DB instances associated with your AWS account in region us-east-1

Overall we think this is pretty cool and nicely leverages the fact that you already
got a Amazon Web Services account when you signed up to use Amazon Mechanical Turk!
However, remember, this can incur hosting charges. We have set things up so that this
process creates very small, very simple RDS instances (which are the cheapest kind).
However, leaving an instance running – or multiple instances – for a really long
time can incur service charges which will be billed to your account by Amazon at the
end of the month (you may not realize the charges until later).

The point is that using a free MySQL database hosted by your university or another
provider may be better, but this solution is available for researchers who can
afford to pay the hosting fee and would like everything in one place.

Obtaining a free MySQL database via OpenShift

If you are hosting your experiment on OpenShift, if you add a MySQL cartridge to your gear, psiTurk will automatically
save data to that db instead of to whatever is specified in your database_url config. OpenShift gears, including using MySQL
cartridges, are free unless you change default configuration settings.

See also

PsiTurk OpenShift documentation.

Step-by-step Tutorials

We have a number of helpful step-by-step tutorials
that introduce key concepts in using psiTurk.

	Getting up and running with the basic Stroop task
	Background

	Initialize the demo code

	Configure your global psiTurk options

	Configure the option for the demo experiment

	Launch the psiTurk shell

	Start/stop the experiment server

	Debug/test the experiment locally

	Experiment Structure

	Launch in AMT sandbox

	Accessing your data

	Automatically computing a bonus

	Approve/Reject Workers

	Assigning bonuses

	Launch “live” experiment

	Further learning…

	Decomposing the Stroop task

Getting up and running with the basic Stroop task

Perhaps the best way to learn about psiTurk is to go through
the steps of configuring and running an experiment. This tutorial
will take you through the steps required to run the basic Stroop
experiment that ships default with psiTurk. This project can be a
great starting place for developing your own experiment.

Warning

This guide assumes you already have the psiTurk command
line tool installed on your computer. If you haven’t
you should begin there and come back when it is
installed. Instruction here.

This guide also assumes you are using version 1.0.10dev
or higher of the psiTurk command line tool. Type
psiturk --version in your command shell/terminal
program to verify your version number.

Background

The Stroop effect is the finding that people show interference
from reading while naming the font color of words. The task is used
to suggest that reading has become a highly “automatic” cognitive
skill. You can read more about the Stroop task here [http://en.wikipedia.org/wiki/Stroop_effect].
This guide won’t comment much on the psychology of it, rather focusing on the technical
aspect of running such an experiment online that consists of a
sequence of trials and which records response time and key presses.

Initialize the demo code

The first step is to obtain the archive of code and resources
specific to the Stroop demo. Additional
experiments are shared on the psiTurk experiment exchange [http://psiturk.org/ee].
However, the Stroop demo comes bundled within the psiturk command line tool.

First use the psiturk-setup-example command to place fresh copies of the files into
a new folder:

$ psiturk-setup-example
Creating new folder `psiturk-example` in the current working directory
Copying /Users/gureckis/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/PsiTurk-1.0.10dev-py2.7.egg/psiturk/example to ./psiturk-example
Creating default configuration file (config.txt)

afterward you should have a new folder in the current directory
named “psiturk-example” with the following listing of files:

$ cd psiturk-example
$ ls -la
total 16
drwxrwxr-x 6 gureckis staff 204 Mar 31 12:18 .
drwx------ 23 gureckis staff 782 Mar 31 12:18 ..
-rw-r--r-- 1 gureckis staff 796 Mar 31 11:55 config.txt
-rw-r--r-- 1 gureckis staff 3226 Mar 31 11:55 custom.py
drwxrwxr-x 9 gureckis staff 306 Mar 31 12:18 static
drwxrwxr-x 19 gureckis staff 646 Mar 31 12:18 templates

See also

A full description of the individual files is provided here.
A few of the files described on the full documentation will not appear
until the first time you start psiturk and launch the psiTurk server.

Configure your global psiTurk options

When you run psiturk-setup-example the first time,
a global configuration file
is created in your local directory named ~/.psiturkconfig.
In order to get access to all the psiTurk features you need to enter credentials
for accessing Amazon Web Services and psiturk.org. Both of these can be added
to ~/.psiturkconfig.

To access Amazon Mechanical Turk and other Amazon Web Services features you needs
to enter your AWS Credentials (see these instructions for details). You can leave
the aws_region at the default value.

To access psiTurk online features such as the Ad Server you need to create an
account on psiturk.org. Please visit http://psiturk.org/register to sign up or
http://psiturk.org/login to obtain your crediations. On your psiTurk dashboard
click “API Keys” and enter them into your file.

See also

Please read more about the global configuration file,
getting set up with Amazon Web Services, and
getting setup with psiturk.org
on their respective documentation pages.

Configure the option for the demo experiment

Another of the files generated by psiturk-setup-example is the config.txt file,
which contains a variety of experiment and server parameters. These values can be
changed by altering the file in any text editor.

The default config.txt file is already mostly configured to help you test
the Stoop demo. Three options you might want to adjust to begin with are:

	In the [Server Parameters] section ensure that the port listed is one that is available on your computer (answer is usually yes unless you have particular firewall software running).

	In the [Server Parameters] section ensure that the host is either localhost (if just testing/debugging locally) or set to 0.0.0.0 (if planning to test live on the AMT site).

See also

A full description of the local configuration file and the
meaning of the various option is available here.

Launch the psiTurk shell

All user commands to psiTurk, such as creating a HIT, launching the experiment server,
or approving workers, are issued through the psiTurk command-line shell. To open the shell, run
psiturk a valid experiment folder. You should see something like this (though probably
colorized on your display):

$ psiturk

http://psiturk.org
 ______ ______ __ ______ __ __ ______ __ __
/\ == \ /\ ___\ /\ \ /__ _\ /\ \/\ \ /\ == \ /\ \/ /
\ \ _-/ \ ___ \ \ \ \ \/_/\ \/ \ \ _\ \ \ \ __< \ \ _"-.
 \ _\ \/_____\ \ _\ \ _\ \ _____\ \ _\ _\ \ _\ _\
 \/_/ \/_____/ \/_/ \/_/ \/_____/ \/_/ /_/ \/_/\/_/

 an open platform for science on Amazon Mechanical Turk

--
System status:
Hi all, You need to be running psiTurk version >= 1.0.5dev to use the
Ad Server feature!

Check https://github.com/NYUCCL/psiTurk or http://psiturk.org for
latest info.
psiTurk version 1.0.10dev
Type "help" for more information.
[psiTurk server:off mode:sdbx #HITs:0]$

The psiTurk shell prompt displays several useful pieces of information: whether the experiment server is on, whether you are in sandbox or live mode, and how many hits are online in your current mode (more on all of these below). While in the psiTurk shell, all commands entered will be executed by psiTurk. To exit the shell, type quit.

See also

More documention of the shell including documentation of each available command
is available here.

Start/stop the experiment server

The psiTurk experiment server is a separate process that acts as a custom, local
web server (similar to Apache). To launch the server type server on in the
command line interface:

[psiTurk server:off mode:sdbx #HITs:0]$ server on
Experiment server launching...
Now serving on http://localhost:
[psiTurk server:on mode:sdbx #HITs:0]$

Note that the command prompt has changed from showing server:off to server:on
in this example (and also changed form red to green on colorized terminals). You can
start or stop the server at any time using the server on and server off
commands. Typically you want to have the server running when you are testing locally,
testing on the AMT “sandbox”, or running your actual experiment. If the server stops
when running your actual experiment, Internet users will no longer be able to
participate in your experiment even if you still have HITs posted on AMT’s website.
Thus, you should think of the experiment server as meaning your experiment is current “live.”

Debug/test the experiment locally

Frequently you would like to test your experiment in your browser locally without
involving Amazon’s servers at all. To do so, ensure that the experiment server is
running (the prompt should show server:on). Then enter the command debug. A new
browser tab will open with the first screen of the experiment. The URL string for this
will look something like this:

http://localhost:22362/ad?assignmentId=debug7FIXMF&hitId=debugI3XW1P&workerId=debugY3UNQY

The http://localhost:22362/ part is set in the configuration options under
Server Parameters in the fields “host” and “port”. The default value,
http://localhost:22362/ is a special term that refers to your own computer.
As mentioned above, if you wanted to run this experiment publically you would want
to change the host option to 0.0.0.0.

The remaining part of the URL created random (i.e., fake) identifiers which stand-in
for the values that Amazon provides identifying the user, hit, etc… Since by default
psiTurk does not allow individuals to take the same experiment more than once (it
checks for you to see if the worker has already completed the task or read too far into
the instructions) these random values are helpful during debugging.

Important

When running in debug mode (i.e., when the assignmentId, hitId, and workerId
variables are prefixed with the word “debug”) everything proceeds as usual. However,
the server will not block the same user from restarting the experiment
after finishing the instructions (as is true normally). This helps debugging
since you don’t have to keep inventing new fake workerId. However, good to
keep in mind this difference.

The first page that you see in the experiment looks something like this:

[image: _images/docs_psiturk_ad_screenshot.png]
This is the page the AMT worker would see when they first accept the hit. When you
click the link, a full screen window will open up which will run the experiment. You can
test it now if you like just to get a sense of things. If you want to stop midway through
that is no problem. Just close that browser window. Running debug again will open a new
browser window and let you repeat the process.

Important

In the typical development cycle you would make changes to the javascript, CSS,
or HTML files in your project locally and use debug to see those changes
and test them. This way the development environment is the same as the
one in which you will eventually deploy your experiment on Mechanical Turk.

Experiment Structure

The basic stroop demo lays out a pretty standard experiment sequence. It is
perhaps most helpful to step through this sequence yourself, but conceptually:

First the users view an “ad” for the study (that is what is displayed above).

Then they view a consent form and are asked to verify that they read
and understood the consent.

Next they are given a sequence of instruction
screens. The experiment logs how long they look at the each instruction
screen as well as if they shift back and forth using the next/previous
buttons.

Then the main experiment begins which dynamically re-draws
the browser window using Javascript. The psiturk.js API
records the data and synchronizes it with your server from time to time.

After the experiment finishes the user is given a simple questionaire about
their experiences in the task. Finally control is returned to Amazon
(or if debugging a stand-in message is displayed).

While all this is going on the psiturk.js API records
if the user is changing windows and prevent them from reloading the
browser mid-way into the task to start over.

Launch in AMT sandbox

Now that you’ve tested the experiment locally, you may want to see how it would
appear on mturk before running it live with paid workers. Amazon offers this
ability through the worker sandbox – a simulated environment that allows developers
to test their HITs.

To create a hit in the worker sandbox, first check that the server is on and
that you are in sandbox mode; the psiTurk prompt should say on next to server
and sdbx next to mode. If you are in live mode, enter the command mode
to switch to sandbox mode. If you are in live mode it will post your task
to the live, paid AMT website instead of the free demo site.

When you are in sandbox mode if you type amt_balance you will see you have
a never ending account with $10,000.00 of fake money to spend on sandbox HITs.

[psiTurk server:on mode:sdbx #HITs:0]$ amt_balance
$10,000.00

To create a hit, enter the command hit create, and then answer the prompts
to set up the HIT. Your choices for the prompt answers are arbitrary for now,
since the HIT won’t be completed by real workers. If the host variable
in the config.txt file for this project is set to localhost (default)
or 127.0.0.1 you will get an error reminding you that you server is
no accessible to the general Internet. Please change this option before
trying to post your task on AMT.

[psiTurk server:on mode:sdbx #HITs:0]$ hit create
number of participants? 5
reward per HIT? 1.00
duration of hit (in hours)? 1

 Creating sandbox HIT
 HITid: 3SA4EMRVJV2ALPN29ZGP6BDPNBS0P0
 Max workers: 5
 Reward: $1.00
 Duration: 1 hours
 Fee: $0.50

 Total: $5.50
 Ad for this HIT now hosted at: https://ad.psiturk.org/view/oyG8sMCn9ySLTTrumsYgHe?assignmentId=debugFOFTCL&hitId=debugTSXLIB

This example create a hit with 5 “slots” for participants (or 5 assignments).
The reward is $1.00 and the participant has 1 hour to complete the task after
accepting the HIT before it will be returned. Finally the unique
“ad” for this experiment/HIT is displayed at the bottom. Notice that the
ad is hosted on https://ad.psiturk.org which means it will always
be visible to virtually all participants (see more info about the
Secure Ad Server).

You can also run create_hit non-interactively by providing arguments when
you run the command, for example create_hit 10 1.00 4.

You should now see the number “1” next to “#HITs:” in the psiTurk prompt,
denoting that you have one active HIT in the worker sandbox. If you type
the command hit list active, you should see a description of your HIT
including the HIT id:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list active
Stroop task
 Status: Assignable
 HITid: 3SA4EMRVJV2ALPN29ZGP6BDPNBS0P0
 max:5/pending:0/complete:0/remain:5
 Created:2014-03-31T21:32:27Z
 Expires:2014-04-01T21:32:27Z

To test your HIT, go to the worker sandbox and search for your HIT by entering the name of your requester account in the search bar. You should see something like this:

[image: _images/docs_psiturk_sandbox_listing.png]
Click “view a HIT in this group” to open a hit. You should see an ad for your HIT appear on the screen. Click “accept HIT”, then click the link in the HIT ad to open the experiment in a full-screen window.
If you complete the HIT in this manner you it should go through all the steps of the AMT process.
Afterwards you will have some data in your database.

Accessing your data

The simplest way to retrieve data is using the download_datafiles
command. This creates
three csv files containing the three kinds of data: trial data, question data, and event data.

If you are using the default SQLLite database (see configuring databases)
then another option is to use a GUI tool like Base [http://menial.co.uk/base/] to access
the data in the participants.db file in your project folder.

If you set your database to use MySQL then you maybe able to connect and export
the data using Sequel Pro [http://www.sequelpro.com/].

Automatically computing a bonus

Approve/Reject Workers

Assigning bonuses

Launch “live” experiment

To launch an experiment “live” you follow the same steps as launching
in the sandbox but first set the “mode” of the command line to “live”:

[psiTurk server:on mode:sdbx #HITs:1]$ mode
Switching modes requires the server to restart. Really switch modes? y or n: y
Entered live mode
Shutting down experiment server at pid 55158...
Please wait. This could take a few seconds.
Experiment server launching...
Now serving on http://0.0.0.0:22362
[psiTurk server:on mode:live #HITs:0]$

Now if you run hit create it will post a hit on the live website.
You must have enough money in your AMT account to pay for the HITs you
are requesting, otherwise an error message will be displayed.
The amt_balance command will let you check your current balance:

[psiTurk server:on mode:live #HITs:0]$ amt_balance
$178.70

Danger

Remember to switch back to “sandbox” mode when you are finished
collecting data so that the command you type will not accidently
create tasks that will charge you account money!

Further learning…

This concludes the conceptual overview of the Stroop example that
ships with psiTurk. Continue reading the decomposing the
Stroop task <decompose_stroop.html> section to learn more about
the gritty details.
This concludes the conceptual

Decomposing the Stroop task

Anatomy of a basic psiTurk project

Every psiTurk compatible project should include a few basic files.
As an example here is the file listing of the Stroop example
which is included in a default psiTurk installation.

These files might all seem mysterious at first, but this section of the
documentation explains their purpose. Of course, projects can include additional
files as needed but these are basics that most projects will want to include.

	config.txt

	custom.py

	participants.db

	server.log

	The static/ directory
	The static/images/ directory

	The static/css/ directory

	The static/js/ directory

	The static/lib/ directory

	The static/fonts/ directory

	The templates/ directory
	ad.html

	complete.html

	consent.html

	custom.html

	debriefing.html

	default.html

	error.html

	exp.html

	The instructions/ folder

	list.html

	postquestionnaire.html

	stage.html

config.txt

This is the basic configuration file for the project.

See also

	Local configuration files

	For details on the structure of these files.

custom.py

This file is optional. Most projects may not need this file
at all. However, if you would like to extend the functionality
of psiTurk in various ways, this file may be for you. In particular,
this allows you to define custom “routes” or “urls” in your project.
One example where this might be used is for creating routes that compute
a participant’s bonus automatically.

See also

	Customizing psiTurk

	For details on the structure of these files.

participants.db

By default, psiTurk will create a local SQLLite database
for storing data. You can also use a different database file
or a MySQL database.

See also

	Configuring Databases

	For a complete guides to databases with psiTurk.

server.log

The psiTurk web server process will not print to the Terminal.
Instead, error messages and warning will be printed to the server log
file. This will be created the first time you run the server.

See also

	Interacting with server log

	The command for viewing the log file.

	Logfile configuration options

	Configuration options controlling the log file.

The static/ directory

The static folder holds files which are not
dynamically altered by the psiTurk server (i.e., templated). This
includes images, javascript libraries, CSS style
sheets etc…
You can add additional files and folders for static files if you
need in your project.

It includes one top-level file (favicon.ico) which is the little
icon that appears next to the URL in the browser window. You
might want to customize this with the favicon.ico file used by
your university or company.

In addition, there are typically four sub-directories:

	The static/images/ directory

	The static/css/ directory

	The static/js/ directory

	The static/lib/ directory

	The static/fonts/ directory

The static/images/ directory

This folder should include all the image files
(e.g., stimuli) used in your experiment.
By default includes a university.png file
which should be replaces with your university
or company logo so that participants know
the identity of your organization.

The static/css/ directory

This directory should hold all the CSS
files you would like to use in your experiment
(by default includes
files shipped with Bootstrap [http://getbootstrap.com]
and a style.css file which overrides some of those
styles for particular parts of the instructions, ad, etc…).

The static/js/ directory

This folder should contain all your custom
Javascript code for your project. In the
Stroop example, this includes ‘task.js’ which
includes the logic for the experiment and
‘util.js’ which includes some supporting/mathematical
functions. You can add additional files as
needed for your project.

The static/lib/ directory

This folder should contain all the external
Javascript libraries that are needed by your
project. It is a good idea to actually include
copies of those libraries here instead of linking
to a CDN or other URL. This was, far into the
future, someone can re-run your experiment without
have to hunt down an older version of the libraries
you used. By default, the Stroop example
includes libraries for
Backbone [http://backbonejs.org/], JQuery [http://jquery.com/], d3.js [http://d3js.org/], and
underscore.js [http://underscorejs.org/].
These four are required for psiTurk to work
properly but you can add other lirbaries for customization
purposes.

The static/fonts/ directory

This directory should hold all the custom
fonts for you project (by default includes
fonts shipped with Bootstrap [http://getbootstrap.com].)

The templates/ directory

The template folder holds the HTML templates for
different parts of your experiment. You can add
additional templates if needed for your project
but this describes the basic set.

You can learn more about templates on the Jinja2 website [http://jinja.pocoo.org/docs/].

The two most important files are ad.html and exp.html
so be sure to review the documentation for those.

	ad.html

	complete.html

	consent.html

	custom.html

	debriefing.html

	default.html

	error.html

	exp.html

	The instructions/ folder

	list.html

	postquestionnaire.html

	stage.html

ad.html

This is a very important file. It contains the
text of your HTML ad. This is the first thing
participants taking your experiment will see.
This file exists locally. When you are debugging
in local mode, the local file will be used.
When you create an ad on the Ad Server, a copy
of this file is uploaded to the psiTurk cloud
server.

See also

	psiturk.org Secure Ad Server

	You ad.html file is uploaded and stored on the
Secure Ad Server when you create a hit.

	Command line tool for creating HITs

	Info on how to create a HIT using the command line.

The structure of this file is very particular.
There are two ways your ad will be viewed.
First, when a potential participants is simply browsing
the website, the will see one version of the ad.
When the “Accept” the ad, the will see a second version
that may include addition information (such as
providing the link to launch your actual experiment).

These two types of adds are contained in the same file.
Which one is displayed is set by the Jinja template <http://jinja.pocoo.org/docs/>
The basic structure is:

{% if assignmentid == "ASSIGNMENT_ID_NOT_AVAILABLE" %}

 HTML/CSS FOR AD BEFORE ACCEPTING

{% else %}

 HTML/CSS FOR AD AFTER ACCEPTING

{% endif %}

Important

You cannot directly reference addition CSS or JS files
in the ad since the ad server will host the ad
using https://. As a result you need to include all
CSS styles you want applied to your ad directly in the
file. boostrap.min.css is provided for free by
the ad server.

For example, here is an example template that comes
with the default stroop example.

<!doctype html>
<!--
 The ad.html has a very specific format.

 Really there are two "ads" contained within this file.

 The first ad displays to participants who are browsing
 the Amazon Mechanical Turk site but have not yet accepted
 your hit.

 The second part of the ad display after the person selected
 "Accept HIT" on the Amazon website. This will reload the
 ad and will display a button which, when clicked, will pop
 open a new browser window pointed at your local psiTurk
 server (assuming it is running and accessible to the Internet).

 See comments throughout for hints

-->
<html>
 <head>
 <title>Psychology Experiment</title>
 <link rel=stylesheet href="/static/css/bootstrap.min.css" type="text/css">
 <style>
 /* these tyles need to be defined locally */
 body {
 padding:0px;
 margin: 0px;
 background-color: white;
 color: black;
 font-weight: 300;
 font-size: 13pt;
 }

 /* ad.html - the ad that people view first */
 #adlogo {
 float: right;
 width: 140px;
 padding: 2px;
 border: 1px solid #ccc;
 }

 #container-ad {
 position: absolute;
 top: 0px; /* Header Height */
 bottom: 0px; /* Footer Height */
 left: 0px;
 right: 0px;
 padding: 100px;
 padding-top: 5%;
 border: 18px solid #f3f3f3;
 background: white;
 }
 </style>
 </head>
 <body>
 <div id="container-ad">

 <div id="ad">
 <div class="row">
 <div class="col-xs-2">
 <!-- REPLACE THE LOGO HERE WITH YOUR UNIVERSITY, LAB, or COMPANY -->

 </div>
 <div class="col-xs-10">

 <!--
 If assignmentid is "ASSIGNMENT_ID_NOT_AVAILABLE"
 it means the participant has NOT accepted your hit.
 This should display the typical advertisement about
 your experiment: who can participate, what the
 payment is, the time, etc...

 -->
 {% if assignmentid == "ASSIGNMENT_ID_NOT_AVAILABLE" %}

 <h1>Call for participants</h1>
 <p>
 The XXX Lab at XXXXX University is looking for online participants
 for a brief psychology experiment. The only requirements
 are that you are at least 18 years old and are a fluent English
 speaker. The task will that XXXXX minutes and will pay XXXXX.
 </p>
 <div class="alert alert-danger">
 This task can only be completed once.
 If you have already completed this task before the system will not
 allow you to run again. If this looks familiar please return the
 HIT so someone else can participate.
 </div>
 <p>
 Otherwise, please click the "Accept HIT" button on the Amazon site
 above to begin the task.
 </p>

 {% else %}

 <!--
 OTHERWISE
 If assignmentid is NOT "ASSIGNMENT_ID_NOT_AVAILABLE"
 it means the participant has accepted your hit.
 You should thus show them instructions to begin the
 experiment ... usually a button to launch a new browser
 window pointed at your server.

 It is important you do not change the code for the
 openwindow() function below if you want you experiment
 to work.
 -->
 <h1>Thank you for accepting this HIT!</h1>
 <p>
 By clicking the following URL link, you will be taken to the experiment,
 including complete instructions and an informed consent agreement.
 </p>
 <script>
 function openwindow() {
 popup = window.open('{{ server_location }}/consent?hitId={{ hitid }}&assignmentId={{ assignmentid }}&workerId={{ workerid }}','Popup','toolbar=no,location=no,status=no,menubar=no,scrollbars=yes,resizable=no,width='+1024+',height='+768+'');
 popup.onunload = function() { location.reload(true) }
 }
 </script>
 <div class="alert alert-warning">
 Warning: Please disable pop-up blockers before continuing.
 </div>

 <button type="button" class="btn btn-primary btn-lg" onClick="openwindow();">
 Begin Experiment
 </button>

 {% endif %}
 <!--
 endif
 -->
 </div>
 </div>
 </div>
 </body>
</html>

complete.html

This is a small HTML file that “completes” the HIT.
When debugging locally this file does nothing other
than display a message.

A different but similar version of this file is provided on
the Secure Ad Server to
register when tasks are completed.

consent.html

This is the informed consent form for your
study. Place the text approved by your IRB here.

custom.html

A placeholder example of adding custom URLs/routes
to your psiTurk application.

See also

	Customizing psiTurk

	For details on the structure of these files.

debriefing.html

This is the debriefing form for you
study. It is optional, and up to you
to display this HTML using your
custom Javascript code.

default.html

A placeholder file that is shown
when someone accesses the top-level
route (i.e., http://myserver.edu:PORT/).
It just redirects people to the ad.

error.html

A HTML file that handles various errors
that can occur during your experiment. Most
errors will result in this template being
shown. You can customize what you want to show
participants in the event of an error here.

A full description of error codes is available
here.

exp.html

This is the main “experiment”. It is where the experiment
“begins” for the subject.

Important this file MUST include the following code
snippet

<script src="static/lib/jquery-min.js" type="text/javascript"> </script>
<script src="static/lib/underscore-min.js" type="text/javascript"> </script>
<script src="static/lib/backbone-min.js" type="text/javascript"> </script>
<script src="static/lib/d3.v3.min.js" type="text/javascript"> </script>

<script type="text/javascript">
// Subject info, including condition and counterbalance codes.
var uniqueId = "{{ uniqueId }}";
var condition = "{{ condition }}";
var counterbalance = "{{ counterbalance }}";
var adServerLoc = "{{ adServerLoc }}"
</script>

<script src="static/js/psiturk.js" type="text/javascript"> </script>

In the header of the file. This sets up the necessary variables for
communication with the psiTurk experiment server.

The last function that should be called in this file is
psiturk.completeHIT()
which will finalize the task.

Here is a default example experiment:

<!doctype html>
<!--
 The exp.html is the main form that
 controls the experiment.

 see comments throughout for advice
-->
<html>
 <head>
 <title>Psychology Experiment</title>
 <meta charset="utf-8">
 <link rel="Favicon" href="static/favicon.ico" />

 <!-- libraries used in your experiment
 psiturk specifically depends on underscore.js, backbone.js and jquery
 -->
 <script src="static/lib/jquery-min.js" type="text/javascript"> </script>
 <script src="static/lib/underscore-min.js" type="text/javascript"> </script>
 <script src="static/lib/backbone-min.js" type="text/javascript"> </script>
 <script src="static/lib/d3.v3.min.js" type="text/javascript"> </script>

 <script type="text/javascript">
 // These fields provided by the psiTurk Server
 var uniqueId = "{{ uniqueId }}"; // a unique string identifying the worker/task
 var condition = "{{ condition }}"; // the condition number
 var counterbalance = "{{ counterbalance }}"; // a number indexing counterbalancing conditions
 var adServerLoc = "{{ adServerLoc }}"; // the location of your ad (so you can send user back at end of experiment)
 </script>

 <!-- utils.js and psiturk.js provide the basic psiturk functionality -->
 <script src="static/js/utils.js" type="text/javascript"> </script>
 <script src="static/js/psiturk.js" type="text/javascript"> </script>

 <!-- task.js is where you experiment code actually lives
 for most purposes this is where you want to focus debugging, development, etc...
 -->
 <script src="static/js/task.js" type="text/javascript"> </script>

 <link rel=stylesheet href="static/css/bootstrap.min.css" type="text/css">
 <link rel=stylesheet href="static/css/style.css" type="text/css">
 </head>
 <body>
 <noscript>
 <h1>Warning: Javascript seems to be disabled</h1>
 <p>This website requires that Javascript be enabled on your browser.</p>
 <p>Instructions for enabling Javascript in your browser can be found
 here<p>
 </noscript>
 </body>
</html>

The instructions/ folder

This is is a folder of instruction screen you
can configure for your experiment. You can add
or remove files here. The psiturk.js API
has functionality for a basic instructions system
but you are welcome to write you own in Javascript.

list.html

A placeholder example of adding custom URLs/routes
to your psiTurk application.

See also

	Customizing psiTurk

	For details on the structure of these files.

postquestionnaire.html

This is an example questionnaire you can give participants
at the end of the task. The code for processing the form
is contained in the psiturk.js API.

stage.html

This is a part of the default stroop example
which is used to display the stimuli. It defines
some default CSS <div> elements which can be
styled and used to show stimuli or instructions
within a task.

Recording data

To record data in your task you make calls to the psiturk.js Javascript API.
There are three kinds of data that psiTurk will help you produce:

	Trial-by-trial log file

	Unstructured (field, value) pairs

	Browser events

Recording trial data

The first dataset that will be produced by your experiment will be a
simple log file, which you add to a single line at a time. In order to
add a line of data to the log, use psiturk.recordTrialData:

psiturk.recordTrialData(['this', 'is', 1, 'line'])

The list of values that you supply to recordTrialData will then be
appended to the log. It is up to you how to structure those lists; you
will have to parse them as part of your analysis.

Recording unstructured data

In addition to trial by trial data, there is often a need to record
information about a participant in the form of (field, value) pairs, for
which you can use psiturk.recordUnstructuredData:

psiturk.recordUnstructuredData('age', 24)
psiturk.recordUnstructuredData('response', 'yes')

Like the trial-by-trial data, it is up to you to decide whether or not
to use this function. For some kinds of experiments (like simple
surveys), this might be the only function you need.

Saving the data

It’s important to remember that psiturk.recordTrialData and
psiturk.recordUnstructuredData only modify the psiturk object on
the client side. If you want to save the data that has been accumulated
to the server, you must call psiturk.saveData().

It’s up to you how often psiturk.saveData() syncs the task data to
the server (e.g., after every block, or once at the end of the
experiment). Using saveData frequently will limit the loss of data
if the participant runs into an error, but keep in mind that it involves
a new request to the server each time it is called.

Browser event data

The third dataset is generated automatically without any input from the
experiment, and is used to track special kinds of events that occur as a
worker is interacting with the page. Currently, this includes:

	“resize” events: when the worker changes the size of their browser
window (the first value recorded is the initial size of the window)

	“focus” events: when the worker switches to and from a different
browser window or application. If the worker leaves the experiment
window, a “focus off” event is recorded; when they return a “focus
on” event is recorded.

Note

Information about how to retrieve recorded data sets can be found
here.

Retrieving Datasets

There are several ways to retrieve experiment data from the database:

Retrieving using download_datafiles

The simplest way to retrieve data is using the download_datafiles
command. This creates
three csv files containing the three kinds of data: trial data, question data, and event data.

Retrieving programmatically

While the download_datafiles shell command is the simplest way to retrieve
experiment data, a more powerful and flexible solution is to retrieve the data
programmatically. Many languages offer libraries for interfacing with mysql and
sqlite databases - below is an example using python and the sqlalchemy package
to retrieve data from a mysql database. We add +pymysql to the db_url to let
sqlalchemy make use of pymysql package. (You can leave the database_url in config.txt
as mysql:// though – psiturk adds +pymysql internally). By including code such as this at the
beginning of your analysis script, you can be sure the the data you’re analyzing is
always complete and up-to-date.

from sqlalchemy import create_engine, MetaData, Table
import json
import pandas as pd

db_url = "mysql+pymysql://username:password@host.org/database_name"
table_name = 'my_experiment_table'
data_column_name = 'datastring'
boilerplace sqlalchemy setup
engine = create_engine(db_url)
metadata = MetaData()
metadata.bind = engine
table = Table(table_name, metadata, autoload=True)
make a query and loop through
s = table.select()
rows = s.execute()

data = []
#status codes of subjects who completed experiment
statuses = [3,4,5,7]
if you have workers you wish to exclude, add them here
exclude = []
for row in rows:
 # only use subjects who completed experiment and aren't excluded
 if row['status'] in statuses and row['uniqueid'] not in exclude:
 data.append(row[data_column_name])

Now we have all participant datastrings in a list.
Let's make it a bit easier to work with:

parse each participant's datastring as json object
and take the 'data' sub-object
data = [json.loads(part)['data'] for part in data]

insert uniqueid field into trialdata in case it wasn't added
in experiment:
for part in data:
 for record in part:
 record['trialdata']['uniqueid'] = record['uniqueid']

flatten nested list so we just have a list of the trialdata recorded
each time psiturk.recordTrialData(trialdata) was called.
data = [record['trialdata'] for part in data for record in part]

Put all subjects' trial data into a dataframe object from the
'pandas' python library: one option among many for analysis
data_frame = pd.DataFrame(data)

How the datastring is structured

The main data from an experiment participant is held in a
string of text in the datastring field of the data table. Understanding how this string
is structured is important to be able to parse the string into a useful format
for your analyses.

The datastring is structured as a json object [http://w3schools.com/json/]. In the description that
follows, sub-objects are indicated by names wrapped in angle brackets (< >).

Top Level

The top level of the datastring contains summary information about the worker,
as well as the datastring sub-objects:

{"condition": condition,
"counterbalance": counterbalance,
"assignmentId": assignmentId,
"workerId": workerId,
"hitId": hitId,
"currenttrial": trial_number_when_data_was_saved,
"useragent": useragent,
"data": <data>,
"questiondata": <questiondata>,
"eventdata": <eventdata>,
"mode": <mode>}

data

The data sub-object contains a list of the data recorded each time
psiturk.recordTrialData() is
called in the experiment:

[{"uniqueid": uniqueid,
"current_trial": current_trial_based_on_#_of_calls_to_recordTrialData,
"dataTime": current_time_in_system_time,
"trialdata": <datalist>},
...
]

Here, <datalist> is whatever is passed to psiturk.recordTrialData() in the
experiment. This could be in any format, such as a string or list, but we
recommend saving data in a json format so that all data is stored in a clear,
easy-to-parse “field-value” format.

questiondata

The questiondata sub-object contains all items recorded using
psiturk.recordUnstructuredlData().

{"field1": value1,
 "field2": value2,
 ...
}

eventdata

The eventdata sub-object contains a list of events (such as window resizing)
that occurred during the experiments:

[{"eventtype": eventtype,
 "value": value,
 "timestamp": current_time_in_system_time,
 "interval": interval},
 ...
]

Customizing psiTurk

Describe custom.py file and more advanced techniques like automatically
computing bonuses

Using external survey tools with psiTurk

With the magic of iframes and javascript window messaging, you can integrate
external survey tools into your psiTurk experiment. This is possible as long as the survey tool
allows custom javascript to be triggered.

Window messaging allows cross-domain messaging via javascript, without having to configure security settings on the server. MDN [https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage] says it best:

“The window.postMessage method safely enables cross-origin communication. Normally, scripts on different pages are allowed to access each other if and only if the pages that executed them are at locations with the same protocol (usually both https), port number (443 being the default for https), and host (modulo document.domain being set by both pages to the same value). window.postMessage provides a controlled mechanism to circumvent this restriction in a way which is secure when properly used.”

Three special steps to hook up your survey to psiTurk:

	Embed your survey as an iframe within one of your psiTurk pages or views.

	Add a message event listener to your psiTurk window

	Post a message from the survey tool to the window.top when the survey is complete. window.top will be your psiTurk window. Do whatever you want via javascript once you receive the expected message.

To tie the psiTurk data and the external survey data together, embed a unique id into the iframe url you load, and then record that unique url into your survey data. Don’t forget to do this. If you forget, you won’t know to who to connect your survey data. If you want to tie things both ways, post back your survey session id as part of the survey-complete post-back.

An example with Qualtrics

As of the time this documentation page was written, Qualtrics has an undocumented “feature”. Qualtrics automatically posts a window message to window.top when the Qualtrics “end of the survey event” is triggered. For Qualtrics surveys embedded as iframes in psiTurk experiments, we can take advantage of this behavior. The Qualtrics-posted message contains your survey_id and the participant’s Qualtrics-created unique session_id. You should already know the survey_id (because you just embedded a link containing this id), but the session_id is Qualtric’s unique id for whoever just finished your survey. You can record that with psiTurk as unstructured data (see Recording unstructured data) if you desire.

Don’t forget to explicitly log the psiTurk unique id as embedded data within Qualtrics. See here [https://www.qualtrics.com/university/researchsuite/advanced-building/survey-flow/embedded-data/] for more about embedding data into Qualtrics surveys.

The posted message when they finish a qualtrics survey is a string that looks like this:

QualtricsEOS|<survey_id>|<qualtrics_session_id>

So you can do something like this on your psiTurk page:

// load your iframe with a url specific to your participant
$('#iframe').attr('src','<your qualtrics url>&UID=' + uniqueId);

// add the all-important message event listener
window.addEventListener('message', function(event){

 // normally there would be a security check here on event.origin (see the MDN link above), but meh.
 if (event.data) {
 if (typeof event.data === 'string') {
 q_message_array = event.data.split('|');
 if (q_message_array[0] == 'QualtricsEOS') {
 psiTurk.recordTrialData({'phase':'postquestionnaire', 'status':'back_from_qualtrics'});
 psiTurk.recordUnstructuredData('qualtrics_session_id', q_message_array[2]);
 }
 }
 }
 // display the 'continue' button, which takes them to the next page
 $('#next').show();
})

This code can be put on a page that has a link with id #next default-hidden via css which advances the participant to the next experimental page. Note that this code checks that the event is QualtricsEOS before continuing on. That’s because Qualtrics posts other events to window.top, too. This code is only interested in the EndOfSurvey event.

Also notice that this code doesn’t implement any security precautions. Normally it’s good practice to check to see where a message is coming from before you act on it [https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage#Security_concerns]. For instance, it might check to verify that the message is coming from a qualtrics.com domain. But in this code, the worst-case scenario is that a tech-savvy participant somehow triggers that they completed the survey before they actually did. In that case, their survey data would be blank, and after visual inspection their assignment could be rejected.

What about not-Qualtrics?

If your survey tool isn’t posting messages to window.top for you, just window.top.postMessage(<message>, <targetOrigin>) yourself. For instance, you might have javascript in your survey tool that does:

window.top.postMessage("all_done|<survey_session_id>","*")

Then just listen for that event back on your psiTurk page, as in the Qualtrics example above.

Running psiTurk on Heroku

Heroku [http://www.heroku.com] is a cloud service that lets you run applications in the cloud. You can run psiTurk on Heroku by preparing a git repository and then pushing it to Heroku which will deploy and autorun the code for you.

The benefits of Heroku are that:

	It’s somewhat easier to manage than Amazon Web Services EC2 for the tech-wary (no need for security groups, no need to ssh in).

	You can set up a free PostgreSQL server (which is highly recommended to use over the default SQLite database that psiTurk uses).

	You get free SSL if you want to host your own ad, which is good because the psiTurk Secure Ad Server goes down under heavy load.

	It’s scaleable.

	You get a Heroku buffering server in front of your psiTurk gunicorn instance, which helps with performance a little bit (although it would be better to put nginx in front of gunicorn within the psiTurk instance).

One downside with Heroku is that it can get expensive if you need any kind of horsepower beyond 512MB memory and one node.

What follows is a step-by-step tutorial for setting up a psiTurk example experiment on Heroku (both the experiment itself and ad) with a PostgreSQL database for collecting data:

	Go to the Heroku website [http://www.heroku.com] and create a new account if you don’t already have one.

	Make sure that psiTurk, git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git], and the Heroku Command Line Interface [https://devcenter.heroku.com/articles/heroku-cli] are installed on your computer.

	Create a psiTurk example at a desired location (all commands listed in this tutorial are meant to be typed into your terminal application):

psiturk-setup-example

If you’re starting from a preexisting psiturk app, you need to grab three files from /psiturk/example: requirements.txt, herokuapp.py, runtime.txt, and Procfile. Place them in your project root, next to your config.txt

	Navigate into your newly created psiTurk example folder:

cd psiturk-example

Or if you are starting from an already-existing psiturk project, navigate to your project root dir.

	Initialize a Git repository in the root dir of your psiturk project the psiTurk (your current working directory):

git init

	Log in to Heroku (and put in your credentials when promted for them):

heroku login

	Create a new app on Heroku. Running this command will add a remote to your .git/config file, which will make it easier to run heroku commands from your project folder that are automatically associated with your newly-created Heroku app.:

heroku create

	Create a Postgres database on the newly created Heroku app:

heroku addons:create heroku-postgresql

	Get the URL of the Postgres database that you just created:

heroku config:get DATABASE_URL

	Get the URL of your app:

heroku domains

	In your psiTurk example, open the config.txt file. Here, find and make the following settings for the these rows, and then save the file:

database_url = <Your Postgres database URL that you retrieved above>
host = 0.0.0.0
threads = 1
ad_location = https://<Your app URL that you retrieved above>/pub
use_psiturk_ad_server = false

	Run the following commands, replacing <XYZ> with your access and secret keys for Amazon Web Services and psiTurk Secure Ad Server (you can also use this Python script [https://github.com/NYUCCL/psiTurk/blob/908ce7bcfc8fb6b38d94dbae480449324c5d9d51/psiturk/example/set-heroku-settings.py] to automatically run these commmands, provided that you’ve filled out your credentials in your .psiturkconfig file. Running this script is the recommended approach!):

heroku config:set ON_HEROKU=true
heroku config:set psiturk_access_key_id=<XYZ>
heroku config:set psiturk_secret_access_id=<XYZ>
heroku config:set aws_access_key_id=<XYZ>
heroku config:set aws_secret_access_key=<XYZ>

	Stage all the files in your psiTurk example to your Git repository:

git add .

	Commit all the staged files to your Git repository:

git commit -m "Initial commit"

	Push the code to your Heroku git remote, which will trigger a build process on Heroku, which, in turn, runs the command specified in Procfile, which autolaunches your psiTurk server on the Heroku platform. Watch it run:

git push heroku master

	Run psiTurk locally on your machine:

psiturk

	To verify that your app is running, visit your heroku domain url in your browser. Obtain your heroku app url by running:

heroku domains

From that url, you can conveniently obtain a debugging url by clicking “Begin by viewing the ad.”

	Run through your experiment. You should now have some data in the database. To extract it into csv files, type:

download_datafiles

This should generate three datafiles for you in your local directory: trialdata.csv, questiondata.csv, and eventdata.csv. Congratulations, you’ve now gathered data from an experiment running on Heroku!

From your local psiTurk session, you can now create and modify HIT’s. When these are accessed by Amazon Mechanical Turk workers, the workers will be directed to the psiTurk session running on your Heroku app. This means that it is never necessary to launch psiTurk and run server on from _anywhere_ to run an experiment on Heroku. The server is automatically running, accessible via your Heroku domain url. (Of course, if you want to debug locally, you can still run a local server.)

Note that if you stay on the “Free” Heroku tier, your app will go to “sleep” after a period of inactivity. If your app has gone to sleep, it will take a few seconds before it responds if you visit its url. It should respond quickly once it “awakens”. Consider upgrading to a “Hobby” heroku dyno to prevent your app from going to sleep.

Also note that if you desire to run commands against your postgresql db, you can run heroku pg:psql to connect, from where you can issue postgres commands. You can also connect directly to your heroku postgres db by installing and runinng postgresql on your local machine, and passing the DATABASE_URL that you set in config.txt as a command-line option.

Running psiTurk on Amazon’s Elastic Compute Cloud (EC2)

With Amazon Web Services (commonly abbreviated as AWS), you can host your experiment in the cloud, using Amazon’s Elastic Compute Cloud (commonly abbreviated as EC2). What follows is a description of how to set up and modify psiTurk on AWS using a pre-built EC2 image.

If you don’t already have an AWS account, first follow the
instructions in Getting setup with Amazon Mechanical Turk.

Setting up a psiTurk EC2 instance using a pre-built image

	Sign in to your Amazon Web Services account and navigate to The AWS Console [https://console.aws.amazon.com/console/], then click on EC2 under the ‘Compute’ section, located under the ‘All services’ heading.

	Make sure that the location in the top right corner is set to ‘US East (N. Virginia)’. (If not, you will not find the pre-built image when searching for it.)

	Either click the ‘Launch Instance’ button that appears on the EC2 dashboard,
or click ‘Instances’ under the ‘INSTANCES’ section on the left menu, then
click ‘Launch Instance’ there.

	You should now be at ‘Step 1: Choose an Amazon Machine Image (AMI)’ in the
EC2 Launch Instance Wizard. Click ‘Community AMIs’ on the left, then in the ‘Search community AMIs’
search box, search for ‘ami-bcab37d4’. A
single AMI should be listed: ‘ubuntu-psiturk-2 - ami-bcab37d4’. Click ‘Select’
on this AMI.

	Choose your instance type. The micro instance is free-tier eligible and
should be sufficient unless you’re expecting very high traffic, bandwidth or
lots of heavy computation on your experiment server. Click ‘Next: Configure
Instance Details’ at the bottom.

	Click ‘Next: Add Storage’ and then ‘Next: Add Tags’.

	You should now be at ‘Step 5: Tag Instance’. Click ‘Add Tag’ and name your EC2 instance in the ‘Key’ field so that you’ll be able to tell it apart from other instances you might run in the future. Then click ‘Next: Configure Security Group’.

	A security group is a set of firewall rules that dictate who can access your server (based on IP) and through which ports. You can create multiple security groups and assign one or more of them to any of your EC2 instances. We’ll use a single security group for our instance.

Check the ‘Create a new security group’ radio button and fill in a name for
your security group. There should already be a rule for SSH with its Source
(which IPs can connect via SSH) set to Anywhere (any IP). You can change
this to My IP for added security, but if your computer’s IP address
changes, which will likely happen if you change physical locations, you’ll
need to modify this rule before you can connect via SSH again.

Click Add Rule, set the Type to Custom TCP Rule, and set the Port Range
to ‘22362’, the port that the psiTurk server runs on by default. If you set the
Source to My IP, be sure to change it back to Anywhere before you try
to run the experiment on Mechanical Turk, otherwise nobody will be able to
access it. Click ‘Review and Launch’.

	If you chose Anywhere for either of the two Security Group Rules, you’ll be shown a warning about this. Review your settings and click Launch.

	You’ll now be prompted to download a key pair to use for public key-based authentication when logging in via SSH [https://en.wikipedia.org/wiki/Secure_Shell]. This is far more secure than password-based authentication. Select Create a new key pair, and name the key pair to whatever you want (preferably the same name as your instance). Click Download Key Pair and save the .pem file somewhere safe yet accessible as you’ll need it every time you connect via SSH. Check the acknowledgment checkbox and click Launch Instance to complete the instance creation process.

	On Linux or Mac, set the file permissions on the key so that only you can read it. You can do this by opening the terminal, navigate to the folder where you saved your key pair and then type

$ chmod 400 your-key.pem

Connecting to your EC2 instance using SSH

	Navigate back to the EC2 console (AWS Console
<https://console.aws.amazon.com/console/>. Then click on “Instances” under the “INSTANCES” section on the left menu and click in the checkbox for the instance that you want to connect to. In the info appearing at the bottom, look for the IPv4 Public IP entry.

	Use the public key you downloaded during instance creation to connect to the
machine at the public IP you just found. The default username for the pre-built
image is ubuntu. On Linux or MacOS, open up a terminal session, navigate to the folder where you saved your key pair and type

ssh -i your-key.pem.txt ubuntu@xx.xx.xx.xxx

where xx.xx.xx.xxx should be replaced with the public IP you just found. Type yes when the system asks you whether to continue connecting. You should now be logged into the instance. If you get a Permissions … are
too open error, follow the chmod step in the previous section to
fix this.

Understanding Error Messages

When there is an error, various messages are shown
to the work. This guide will document what the mean
from an experimenter’s point of view and what probably
went wrong.

Frequently Asked Questions

Why doesn’t psiTurk work on Windows?

Windows has very limiting security restrictions which prevent
server processes from running. As a result we cannot support
Windows. Instead we support all system based on an underlying
Unix kernel which can run python. This include Mac OS X and
Linux.

I need an experiment to do X, will psiTurk be able to do this?

Generally any standard psychology experiment can be run using psiTurk.
This means experiments with multiple trials, trials which change
based on participant’s past responses, experiments with multiple phases
or trial types, surveys, experiment recording reaction time, mouse
tracking experiments, decision making, etc… The possibilities are actually not as much
a function of psiTurk as of the capabilities of programming an
experiment in Javascript. Any web application or applet that runs
Javascript should play nicely with psiTurk with a little hacking.
psiTurk mostly just provides the server and data logging capabilities,
and it is up to you to define how your experiment actually looks and behaves.

There are examples in the experiment exchange [https://psiturk.org/ee]
which provide a more concrete understanding of the scope of things
people have attempted with psiTurk.

One place where psiTurk currently hasn’t been used is group or
multi-player experiments (although we’ve heard rumors of users who have
reported success with this). In addition, we are not aware of people
using psiTurk yet for multi-day or multi-session experiments. This is
not a technical limitation per-se but may require some hacking. We’d
be happy if someone tried to do these types of experiments and reported
back about what we could add to the core psiTurk code to help with this.

My university will not give me a static IP address. Can I still use psiTurk?

psiTurk requires an generally internet-addressable computer. Some
universities prevent this for security purposes. There are a couple of solutions
if this situation applies to you. First you can run psiturk via an
ssh session on any remote computer or server for which you can launch
server processes. Examples would be a lab server that has a static ip
address and allows users-lavel access to particular ports. Alternative
there are a number of (free) services which will give you a unix
command line “in the cloud” including Red Hat’s OpenShift [https://www.openshift.com/].
Detailed instruction on how to do this are available here.

I’m trying to run psiTurk at home using a cable modem or other connection. Will it work?

In general this set up is definitely possible. However, you may need to configure
the wireless router that came with your internet service to forward particular incoming
ports to your device (i.e., to you laptop instead of you phone or tablet). There are
many excellent tutorials about this online [http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/].

I’m having trouble with my AWS/AMT credentials

In order to use your credentials you must create a requester account
on Amazon Web Services. This usually involves providing a credit card
number as well as a phone verification step. Finally, some users report
having to log into http://requester.mturk.com
at least once to agree to the software terms.

What do I need to know about running psiTurk on a remote server?

The psiTurk command line process and server generally works great over a ssh connection.
Perhaps the only thing to be aware of are that you set the host field
of your project’s local configuration file to the ip address of the remote machine
if you want to be able to easily access it. In addition, while the standard
debug command automatically launches your web-browser, you usually don’t
want this behavior on the remove machine. Instead use debug -p to simply
print the correct URL and copy/paste it into a browser on your local computer.

Can you program my experiment for me?

Nope, sorry. Please check the experiment exchange [https://psiturk.org/ee] for
examples you might be able to draw insight from.

I’m having Javascript errors when designing my experiment. Can you help?

Sorry, but probably not. See the above about programming experiments. There are many
ways of getting help with psiTurk specifically and many
excellent tutorials online for developing web applications using Javascript. A good
example is CodeAcademy’s Javascript lessons [http://www.codecademy.com/tracks/javascript].

Where is the /static/js/psiturk.js file? It doesn’t appear in any of the experiments I have downloaded!

psiturk.js doesn’t actually “exists” as a file in the static folder of any project.
Instead, the psiturk server/command line tool automatically generates this file.
The best way to view it is by “view source” in your browser while debugging your experiment.
While somewhat unintuitive, this ensures that changes to psiturk.js are linked
to new versions of the overall psiturk command line tool (since they are tightly
interdependent).

Getting help

There are a number of ways to get help with psiTurk if you are
stuck.

	The https://psiturk.org website has a wealth of information about the system.

	There is a Google Group devoted to psiTurk located here [https://groups.google.com/forum/#!forum/psiturk]. Search for answers to common questions or post your own. Chances are if you run into a problem someone else will as well.

	Browse the issues list [https://github.com/NYUCCL/psiTurk/issues?state=open] on github. This is an open discussion of possible issues, bugs, feature requests, etc… If your problem doesn’t appear in the open or closed issues you might consider opening a bug report. See the guide for contributors [http://psiturk.readthedocs.org/en/latest/contribute.html#create-issues] for more information about using the issues tracker.

	Todd Gureckis [http://gureckislab.org/~gureckis] taught a class covering online data collection and psiTurk at NYU Spring 2014. All lectures were videotaped and are available here [http://gureckislab.org/courses/spring14/online_data_collection/].

	Follow @psiturk [https://twitter.com/psiturk] on Twitter for helpful tips and breaking news.

	If all else fails and you feel you simply cannot get help you can consider emailing authors@psiturk.org, the benevolent dictators of the project and system architects. However, if you haven’t first pursed the above options you may not get a quick response.

Disclaimer

psiTurk is free, open source software provided to scientists
to aid in research. Because it helps you run paid experiments online
using Amazon Mechanical Turk errors in the software, or in your
use of the software, can lead to loss of money. This is the very
nature of online research (errors may mean someone will actually
do your task and you need to pay them as a result).

Our belief is that these types of errors can be best limited
by having open, peer-reviewable software and sharing bug reports
between labs and research groups. In other words, even if you
wrote this software yourself it is possible that some bug could
cost you money when getting started.

Danger

We take no responsibility for your use of the software. We make
no claims that it is bug-free and any errors are not our
responsibility. This is a community-run, community-supported
system and not a company selling a product. We use
the software in our lab and, when used correctly, has never caused
us to lose money on Mechanical Turk due to mistakes. However, it is
always possible to mis-use the software in a costly way.

In addition, while we strive to keep the psiturk.org Secure Ad Server running,
crashes in that system could, in the short-term, affect your ability to
collect data. Again, using the system you must understand what the
risks are. The good news is that because the system is open source
if there is a problem everyone can read the code themselves and make
suggestions on how to fix things.

Some suggestion to avoid costly mistakes from happening are

1. Test your code a lot in the sandbox to make sure every stage is working
and you understand what psiTurk is doing.

	Run small batches at a time to verify everything is working

3. Keep your Amazon payments account balance reasonably low at any point
in time. It is impossible to spend more money than is in your account
at any point in time.

4. Exit the psiTurk server when you are not using it to collect data
(i.e., do not leave psiTurk server running indefinitely). This ensures
that no one will be able to actually perform your task and then claim
they are owed payment. This also limits the ability of bots and other
scammers to reverse engineer your task.

5. When testing “live”, explain in the text of your Ad that this is a test and
you are looking for feedback. Workers get fustrated when you put bad
or broken experiments online, but are often very helpful if you explain
that you are hoping to get feedback on an unfinished project.

Contributing to psiTurk

Note: This guide is copied more or less from the contributors guidelines [https://github.com/gureckis/gunicorn/blob/master/CONTRIBUTING.md]
of the gunicorn [https://github.com/benoitc/gunicorn] project. Alternations
were made for the nature of this particular project. An up to date copy of this guide
always resides here [https://github.com/NYUCCL/psiTurk/blob/master/CONTRIBUTING.md].

Want to contributed to psiTurk? Awesome! Here are instructions to get you
started. We want to improve these as we go, so please provide feedback.

Contribution guidelines

Pull requests are always welcome

We are always thrilled to receive pull requests, and do our best to
process them as fast as possible. Not sure if that typo is worth a pull
request? Do it! We will appreciate it.

If your pull request is not accepted on the first try, don’t be
discouraged! If there’s a problem with the implementation, hopefully you
received feedback on what to improve.

We’re trying very hard to keep psiTurk lean, focused, and useable. We don’t want it
to do everything for everybody. This means that we might decide against
incorporating a new feature. However, there might be a way to implement
that feature on top of psiTurk.

Discuss your design on the mailing list

We recommend discussing your plans in our Google group [https://groups.google.com/d/forum/psiturk]
before starting to code -
especially for more ambitious contributions. This gives other
contributors a chance to point you in the right direction, give feedback
on your design, and maybe point out if someone else is working on the
same thing.

Create issues…

Any significant improvement should be documented as a github issue [https://github.com/NYUCCL/psiTurk/issues]
before anybody starts working on it.

…but check for existing issues first!

Please take a moment to check that an issue doesn’t already exist
documenting your bug report or improvement proposal. If it does, it
never hurts to add a quick “+1” or “I have this problem too”. This will
help prioritize the most common problems and requests.

Conventions

Fork the repo and make changes on your fork in a new feature branch:

	If it’s a bugfix branch, name it XXX-something where XXX is the number
of the issue

	If it’s a feature branch, create an enhancement issue to announce your
intentions, and name it XXX-something where XXX is the number of the issue.

Make sure you include relevant updates or additions to documentation
when creating or modifying features.

Write clean code.

Pull requests descriptions should be as clear as possible and include a
reference to all the issues that they address.

Code review comments may be added to your pull request. Discuss, then
make the suggested modifications and push additional commits to your
feature branch. Be sure to post a comment after pushing. The new commits
will show up in the pull request automatically, but the reviewers will
not be notified unless you comment.

Commits that fix or close an issue should include a reference like
Closes #XXX or Fixes #XXX, which will automatically close the issue
when merged.

Add your name to the THANKS file, but make sure the list is sorted and
your name and email address match your git configuration.

Contributing to the docs

Our docs are currently hosted at readthedocs [http://psiturk.readthedocs.org].
Readthedocs uses Sphinx [http://sphinx-doc.org/] as the backend for their
documentation so in order to update the docs you will first have to install
Sphinx simply by typing:

easy_install -U Sphinx

on the command line.

There’s a Makefile in the docs directory, so you can generate the docs by
running make on the command line, for example:

make html

will generate the html docs in _build/html. Running make with no arguments
will show you the available subcommands.

All documentation files are in the docs folder and are formatted as
reStructured Text. A good, detailed manual for the reStructured Text
syntax can be found here [http://docutils.sourceforge.net/docs/user/rst/quickstart.html].

Some essentials:

The index page is the main page that users see will see when they open the
docs. It is also how readthedocs generates the sidebar that contains all
the names of individual pages in the documentary so it is important that
this is formatted correctly.

The main important feature is the toctree [http://sphinx-doc.org/markup/toctree.html].

The toctree just looks like this:

.. toctree::
 forward
 install
 quickstart
 recording

Sphinx will go through the pages listed in the toctree, search for subject
headers and create both links for the index page and the sidebar in the
correct format in the order that the pages are listed. For this reason,
it is also very important that subjected headers be used correctly on
the individual pages. For example, the forward page has a title that looks
like this:

Forward
=======

and subtitles that look like this:

What is psiTurk?
~~~~~~~~~~~~~~~~





It actually doesn’t matter what character you use for the underline, it can
be any of


= - ` ‘ ” : ~ ^ _ * + # < >




but it must be consistent since all headers with the same character will be
at the same level. For convenience, we are using ===== to mean title and ~~~~~
to mean sub header.
Some other basic things in rST:

Links look like this:


``Getting psiTurk installed on your computer <install.html>``_




with the actual page in angle brackets. If the link is to another page within the docs,
you only need to include the name of the page.
Whenever you include a code example, put this line before:

.. code:: javascript





All pages on readthedocs.org (including this one) have a link to “Edit on Github.”
This can be a great way to “steal” formatting ideas for your documentation
edits.






Decision process


How are decisions made?

In general, all decisions affecting psiTurk, big and small, follow the same 3 steps:


	Step 1: Open a pull request. Anyone can do this.


	Step 2: Discuss the pull request. Anyone can do this.


	Step 3: Accept or refuse a pull request. The little dictators do this (see below “Who decides what?”)







Who decides what?

psiTurk, like gunicorn, follows the timeless, highly efficient and totally unfair system
known as Benevolent dictator for life [http://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life].
In the case of psiTurk, there are multiple little dictators which are the core members of the
gureckislab [http://gureckislab.org] research group and alumni.  The dictators
can be emailed at authors@psiturk.org.

For new features from outside contributors, the hope is that friendly
consensus can be reached in the discussion on a pull request.  In cases where it
isn’t the original project creators John McDonnell [https://github.com/johnmcdonnell]
and/or Todd Gureckis [https://github.com/gureckis] will intervene to decide.

The little dictators are not required to create pull requests when
proposing changes to the project.




Is it possible to become a little dictator if I’m not in the Gureckis lab?

Yes, we will accept new dictators from people esp. engaged and helpful in
improving the project.




How is this process changed?

Just like everything else: by making a pull request :)









          

      

      

    

  

    
      
          
            
  
Project Roadmap

psiTurk is always looking to improve and to increase
the number of contributors.  We thought it would be helpful
to lay out a basic roadmap of where we would like to see the
project go in the future.  This roadmap may inspire you to
implement a new feature!


General priorities


Documentation

The documentation is greatly lagging behind progress on
the psiTurk platform.  We need help with people debugging
documentation, improving it, and making additions!  Notice how
all documentation pages (including this one!) include a link
to “Edit on GitHub”.  Make a pull request and help us
improve these docs!




Automated testing

The version 2.0 release introduced a number of new features
which are fairly complex because they require communication
over the Internet, RESTful APIs, etc…  While there are
automated unit tests for many of these features, it is
important to have better tests of these features.  Testing
isn’t glamorous but writing tests improves your health,
looks, and chances of getting in heaven.




Alternative database solutions

Currently psiTurk offers a variety of database solutions
including local SQLite files, self-administered MySQL
servers, and MySQL processes hosted on Amazon’s Web
Services (RDS) platform.  However, all of these are a little
clunky and require users to know quite a bit about data management.
The demands placed on these databases by a single experiment
are not excessive, and thus there might be a more robust
solution (e.g., NoSQL).  One possibility is to host a robust
cloud-based data API off psiturk.org.




psiturk.js

All projects currently should use psiturk.js to
save data to the server and update the user status as
they progress.  It might be nice if these included
additional features including easily displaying
instructions, providing simple quizes, etc…  In
theory many parts of the psiturk command
shell could be moved into the psiturk.js
library (e.g., one could even create hits and ads
via javascript calls).  This might eventually allow
the power of the psiturk platform to be leveraged
even on simple, standard web server platforms
(i.e., not relying on Flask).




Ad Server

The Ad Server has the potential to gather valuable
data about participants in studies, how naive they
are, etc…  Currently only a limited number of
statistics are gathered, and much of this data is
not publically accessible via an API or interface.
Future versions of the psiturk.org dashboard could
provide users with more interesting statistics
about participants in their experiments, their geographic
location, etc…




Unique IP issues

A major issue with psiTurk is that it requires
a unique, Internet addressable IP address.  This is
a hurdle at some universities or companies.  This is
a bug and a feature at some level.  The feature side
is that for many users the ability to serve
experiments off their local computer obviates the
need for a dedicated server and simplifies some
web security issues.  For other users thought this
is a fustrating hurdle to overcome in order to
use psiturk.  We are interesting in the community’s
thoughts about this and suggestions about best
practices include cloud based hosting systems like
Red Hat’s OpenShift and Amazon’s AWS.






Version 3.0

We envision that eventually psiturk could move
entirely into the cloud (i.e., no need for
user to install command line tool).  This may be
supported by changes and extensions to the psiturk.org API
and the psiturk.js library.  The emphasis in our
initial development has been on advanced users/programmers
comfortable in a unix environment,
but future version could emphasize novice web programmers
who are new to online experiments (e.g., undergrads).

If you have ideas about future directions for the project
the Github issues tracker [https://github.com/NYUCCL/psiTurk/issues?state=open] is a great place to share them.







          

      

      

    

  

    
      
          
            
  
psiturk.js API

Everything in the psiturk.js API is scoped under the psiturk
namespace.


Creating the psiTurk object

To use the psiTurk library, a psiturk object must be created at
the beginning of your experiment.  It takes two key arguments uniqueId
and adServerLoc.  These two variables are first created in
exp.html <file_desc/exp_html.html>.  They tell psiTurk which unique
number/code corresponds to the current participant (allowing updating
of data as the task progresses) and the location of the ad
where users should be sent when the task is complete.

// Create the psiturk object
var psiTurk = PsiTurk(uniqueId, adServerLoc);

// Add some data and save
psiturk.addUnstructuredData('age', 24)
psiturk.saveData();





The following documents the javascript API.




psiturk.taskdata

taskdata is a Backbone model [http://backbonejs.org/#Model] used
to store all data generated by a participant and to sync it to the
database.

taskdata has the following fields with these default values:

condition: 0
counterbalance: 0
assignmentId: 0
workerId: 0
hitId: 0,
useragent: ""
currenttrial: 0
data: ""
questiondata: {}
eventdata: []





These variables are either set during initialization or using the
methods of the psiturk object. However, since taskdata is a
Backbone model [http://backbonejs.org/#Model], you can always access
their values directly using the Backbone
`set <http://backbonejs.org/#Model-set>`__ and
`get <http://backbonejs.org/#Model-get>`__ methods, which may be
useful for debugging. For example:

psiturk.taskdata.set('condition', 2);
psiturk.taskdata.get('condition');








psiturk.preloadPages(pagelist)

For each path in pagelist, this will request the html and store in
the psiturk object. A given page can then be loaded later using
psiturk.getPage(pagename).

Example:

// Preload a set of HTML files
psiturk.preLoadPages(['instructions.html', 'block1.html', 'block2.html']);

// Set the content of the body tag to one of the pages
$('body').html(psiturk.getPage('block1.html'));








psiturk.getPage(pagename)

Retrieve a stored HTML object that has been preloaded using
psiturk.preLoadPages.




psiturk.showPage(pagename)

Set the BODY content using an HTML object that has been preloaded
using psiturk.preloadPages.

Example:

psiturk.preloadPages(['instructions.html', 'block1.html', 'block2.html');
psiturk.showPage('instructions.html');








psiturk.preloadImages(imagelist)

Cache each image in imagelist for use later.




psiturk.recordTrialData(datalist)

Add a single line of data (a list with any number of entries and any
type) to the psiturk object. Using this will not save this data to
the server, for that you must still call psiturk.saveData().

Example:

// data comprised of some list of variables of varying types
data = ['output', condition, trialnumber, response, rt];
psiturk.recordTrialData(data);








psiturk.recordUnstructuredData(field, value)

Add a (field, value) pair to the list of unstructured data in the task
data object.

Example:

psiturk.recordUnstructuredData('age', 24);








psiturk.saveData([callbacks])

Sync the current psiTurk task data to the database.

An optional argument callbacks can provide functions to run upon
success or failure of the saving.

psiturk.saveData({
   success: function() {
      // function to run if the data is saved
   },
   error: function() {
      // function to run if there was an error
   }
});








psiturk.completeHIT()

This finishes the task by passing control of the experiment back
to the Secure Ad Server <secure_ad_server.html>.  When in
debug mode this just cleans up the task.  When running live
on the sandbox or live site this passes control of the browser
back to the Ad Server so that the subject can be marked as complete
and the user’s browser will correctly finish the HIT on Amazon’s
site.




psiturk.doInstructions(pages, callback)

psiTurk includes a basic method for showing a sequence of
instructions.  You are always free to write your own instructions
code (and may need to).  However, this provides a basic template
for a pretty simple typical type of instructions composed of
a sequence of multiple pages of text and graphics along with
a “next” and (optionally) “previous” button.

The doInstructions() method takes two arguments.
The first is a list of HTML pages that you would like
to display.  These should appear in the order you would
like them to be displayed to participants.  The instructions
method uses the showPage()
method to display the HTML of the page.

Prior to calling doInstructions() all the instruction
pages you plan to display should be preloaded using
the preloadPages()
method.

Within each HTML page there should be a button or other HTML
element with class equal to continue which the user
can click to move to the next screen.

An Bootstrap [http://getbootstrap.com] example is:

<button type="button" id="next" value="next" class="btn btn-primary btn-lg continue">
    Next <span class="glyphicon glyphicon-arrow-right"></span>
</button>





In addition, if the HTML document includes an element
with class previous it will, when clicked, go to the previous
page.  As a result you should not include a previous button on the
first HTML page.

An example previous button using Bootstrap [http://getbootstrap.com] is:

<button type="button" id="next" value="next" class="btn btn-primary btn-lg previous">
    <span class="glyphicon glyphicon-arrow-left"></span> Previous
</button>





The final argument to the instructions object is the method to be called
when the “continue” button on the last page of the instructions is called.

Example

psiturk = new PsiTurk(uniqueId, adServerLoc);
var pages = [
    "instructions/instruct-1.html",
    "instructions/instruct-2.html",
    "instructions/instruct-3.html"];
psiTurk.preloadPages(pages); // preload the pages
var instructionPages = [ // any file here should be preloaded first
    "instructions/instruct-1.html",
    "instructions/instruct-2.html",
    "instructions/instruct-3.html"]; // however, you can have as many as you like
psiturk.doInstructions(instructionPages,
                        function() { currentview = new StroopExperiment(); });





The last line in this example uses an anonymous function
to launch the Stroop Experiment.




psiturk.finishInstructions()

finishInstructions is used to change the participant’s status code
to 2 in the database, indicating that they have begun the actual
task.

In addition, this removes the beforeunload handler such that if people
attempt to close (or reload) the page, they will get an alert asking
them to confirm that they want to leave the experiment.

You do not have to use doInstructions() in order to call
finishInstructions().  In the example above you would
want to call psiturk.finishInstructions() in the StroopExperiment() class.

Example

psiturk = new PsiTurk(uniqueId, adServerLoc);
...
psiturk.finishInstructions();











          

      

      

    

  

    
      
          
            
  
psiturk.org RESTful API





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          psiTurk Documentation
        


        		
          Forward
          
            		
              Understanding the psiTurk design philosophy: An analogy
            


            		
              What is Mechanical Turk?
            


            		
              What is psiTurk?
            


            		
              How do I host a psiTurk experiment?
            


            		
              Do I have to learn how to code?
            


          


        


        		
          Getting psiTurk Installed on Your Computer
          
            		
              Installation requirements
            


            		
              Installation steps
              
                		
                  Install stable version via pypi
                


                		
                  Install directly from github
                


                		
                  Updating from a previous version
                


                		
                  Running inside a Virtual Environment
                


              


            


            		
              System-specific notes
              
                		
                  Mac OS X
                


                		
                  Linux
                


                		
                  Windows
                


                		
                  Cloud-based install (experimental)
                


              


            


          


        


        		
          Getting setup with Amazon Mechanical Turk
          
            		
              Creating an AWS account
            


            		
              Obtaining AWS credentials
            


            		
              Creating an AMT Requester account
            


            		
              Linking funds
            


            		
              Additional instructions
            


          


        


        		
          Getting setup with psiturk.org
          
            		
              Creating a psiturk.org account
            


            		
              Obtaining psiturk.org API credentials
            


          


        


        		
          psiturk.org Secure Ad Server
          
            		
              Ads, Amazon Mechanical Turk, and the External HIT type
            


            		
              Why use the psiturk.org Secure Ad Server?
            


            		
              Sound great, how do I use it?
            


          


        


        		
          Sharing and replicating with the psiTurk.org Experiment Exchange
        


        		
          Quickstart
        


        		
          Configuration Files
          
            		
              Global configuration file
            


            		
              Local configuration file
              
                		
                  HIT Configuration
                


                		
                  Database Parameters
                


                		
                  Server Parameters
                


                		
                  Task Parameters
                


                		
                  Shell Parameters
                


              


            


          


        


        		
          Command-line Interface
          
            		
              Starting the psiTurk shell
              
                		
                  Usage
                


                		
                  Options
                


              


            


            		
              The psiTurk shell prompt
              
                		
                  Server field
                


                		
                  Mode field
                


                		
                  #HITs field
                


              


            


            		
              amt_balance command
              
                		
                  Usage
                


                		
                  Example
                


              


            


            		
              config command + subcommands
              
                		
                  Description
                


                		
                  config print
                


                		
                  config reload
                


                		
                  config help
                


              


            


            		
              db command + subcommands
              
                		
                  db get_config
                


                		
                  db use_local_file
                


                		
                  db use_aws_instance
                


                		
                  db aws_list_regions
                


                		
                  db aws_get_region
                


                		
                  db aws_set_region
                


                		
                  db aws_list_instances
                


                		
                  db aws_create_instance
                


                		
                  db aws_delete_instance
                


              


            


            		
              debug command
              
                		
                  Usage
                


              


            


            		
              download_datafiles command
              
                		
                  Usage
                


              


            


            		
              help command
              
                		
                  Usage
                


                		
                  Examples
                


              


            


            		
              hit command + subcommands
              
                		
                  Description
                


                		
                  hit create
                


                		
                  hit extend
                


                		
                  hit expire
                


                		
                  hit dispose
                


                		
                  hit list
                


              


            


            		
              psiturk_status command
              
                		
                  Usage
                


                		
                  Example
                


              


            


            		
              quit command
              
                		
                  Usage
                


                		
                  Example
                


              


            


            		
              server command + subcommands
              
                		
                  Description
                


                		
                  server on
                


                		
                  server off
                


                		
                  server restart
                


                		
                  server log
                


              


            


            		
              status command
              
                		
                  Usage
                


                		
                  Example
                


              


            


            		
              mode command
              
                		
                  Usage
                


                		
                  Examples
                


              


            


            		
              worker command + subcommands
              
                		
                  Description
                


                		
                  worker approve
                


                		
                  worker reject
                


                		
                  worker unreject
                


                		
                  worker bonus
                


                		
                  worker list
                


              


            


          


        


        		
          Configuring Databases
          
            		
              Using SQLite
            


            		
              Using a self-hosted MySQL database (recommended)
            


            		
              Obtaining a low-cost (or free) MySQL database on Amazon’s Web Services Cloud
            


            		
              AWS Regions
            


            		
              Creating an RDS Instance
            


            		
              Obtaining a free MySQL database via OpenShift
            


          


        


        		
          Step-by-step Tutorials
          
            		
              Getting up and running with the basic Stroop task
              
                		
                  Background
                


                		
                  Initialize the demo code
                


                		
                  Configure your global psiTurk options
                


                		
                  Configure the option for the demo experiment
                


                		
                  Launch the psiTurk shell
                


                		
                  Start/stop the experiment server
                


                		
                  Debug/test the experiment locally
                


                		
                  Experiment Structure
                


                		
                  Launch in AMT sandbox
                


                		
                  Accessing your data
                


                		
                  Automatically computing a bonus
                


                		
                  Approve/Reject Workers
                


                		
                  Assigning bonuses
                


                		
                  Launch “live” experiment
                


                		
                  Further learning…
                


              


            


            		
              Decomposing the Stroop task
            


          


        


        		
          Anatomy of a basic psiTurk project
          
            		
              config.txt
            


            		
              custom.py
            


            		
              participants.db
            


            		
              server.log
            


            		
              The static/ directory
              
                		
                  The static/images/ directory
                


                		
                  The static/css/ directory
                


                		
                  The static/js/ directory
                


                		
                  The static/lib/ directory
                


                		
                  The static/fonts/ directory
                


              


            


            		
              The templates/ directory
              
                		
                  ad.html
                


                		
                  complete.html
                


                		
                  consent.html
                


                		
                  custom.html
                


                		
                  debriefing.html
                


                		
                  default.html
                


                		
                  error.html
                


                		
                  exp.html
                


                		
                  The instructions/ folder
                


                		
                  list.html
                


                		
                  postquestionnaire.html
                


                		
                  stage.html
                


              


            


          


        


        		
          Recording data
          
            		
              Recording trial data
            


            		
              Recording unstructured data
            


            		
              Saving the data
            


            		
              Browser event data
            


          


        


        		
          Retrieving Datasets
          
            		
              Retrieving using download_datafiles
            


            		
              Retrieving programmatically
            


            		
              How the datastring is structured
              
                		
                  Top Level
                


                		
                  data
                


                		
                  questiondata
                


                		
                  eventdata
                


              


            


          


        


        		
          Customizing psiTurk
        


        		
          Using external survey tools with psiTurk
          
            		
              An example with Qualtrics
            


            		
              What about not-Qualtrics?
            


          


        


        		
          Running psiTurk on Heroku
        


        		
          Running psiTurk on Amazon’s Elastic Compute Cloud (EC2)
          
            		
              Setting up a psiTurk EC2 instance using a pre-built image
            


            		
              Connecting to your EC2 instance using SSH
            


          


        


        		
          Understanding Error Messages
        


        		
          Frequently Asked Questions
          
            		
              Why doesn’t psiTurk work on Windows?
            


            		
              I need an experiment to do X, will psiTurk be able to do this?
            


            		
              My university will not give me a static IP address.  Can I still use psiTurk?
            


            		
              I’m trying to run psiTurk at home using a cable modem or other connection. Will it work?
            


            		
              I’m having trouble with my AWS/AMT credentials
            


            		
              What do I need to know about running psiTurk on a remote server?
            


            		
              Can you program my experiment for me?
            


            		
              I’m having Javascript errors when designing my experiment.  Can you help?
            


            		
              Where is the /static/js/psiturk.js file?  It doesn’t appear in any of the experiments I have downloaded!
            


          


        


        		
          Getting help
        


        		
          Disclaimer
        


        		
          Contributing to psiTurk
          
            		
              Contribution guidelines
              
                		
                  Pull requests are always welcome
                


                		
                  Discuss your design on the mailing list
                


                		
                  Create issues…
                


                		
                  …but check for existing issues first!
                


                		
                  Conventions
                


                		
                  Contributing to the docs
                


              


            


            		
              Decision process
              
                		
                  How are decisions made?
                


                		
                  Who decides what?
                


                		
                  Is it possible to become a little dictator if I’m not in the Gureckis lab?
                


                		
                  How is this process changed?
                


              


            


          


        


        		
          Project Roadmap
          
            		
              General priorities
              
                		
                  Documentation
                


                		
                  Automated testing
                


                		
                  Alternative database solutions
                


                		
                  psiturk.js
                


                		
                  Ad Server
                


                		
                  Unique IP issues
                


              


            


            		
              Version 3.0
            


          


        


        		
          psiturk.js API
          
            		
              Creating the psiTurk object
            


            		
              psiturk.taskdata
            


            		
              psiturk.preloadPages(pagelist)
            


            		
              psiturk.getPage(pagename)
            


            		
              psiturk.showPage(pagename)
            


            		
              psiturk.preloadImages(imagelist)
            


            		
              psiturk.recordTrialData(datalist)
            


            		
              psiturk.recordUnstructuredData(field, value)
            


            		
              psiturk.saveData([callbacks])
            


            		
              psiturk.completeHIT()
            


            		
              psiturk.doInstructions(pages, callback)
            


            		
              psiturk.finishInstructions()
            


          


        


        		
          psiturk.org RESTful API
        


      


    
  

_images/docs_AWS_credentials_create_button.png
Create New Access Key





_images/docs_AWS_credentials_created_popup.png
Your access key (access key ID and secret access key) has been created successtully.

Download your key file now, which contains your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.

To help protect your securty, store your secret access key securely and do not share it
v Hide Access Key

Acosss Key ID:
‘Secret Acoess Key:

Download Key File | | Close






_images/docs_AWS_credentials_show_button.png
» Show Access Key





_images/docs_AWS_form_contact_info.png
i
ﬂgg? amazon
Webservices ‘Amazon Web Servies Sign Up

Contact Information

s

AWS Customer Agreement

Rrstan e Somces Customer sareament 2





_images/docs_AWS_credentials_download_button.png
Download Key File.





_images/docs_AWS_credentials_page.png
« Your Security Credentials

Aocess Keys coss Koy 10






_images/docs_AWS_form_pin.png
Armsson e v San U,

2

Ioentiy Verfication by Telephane.

Your PIN: 5578

3ty verbentioncompiets |

e smsmcr oy






_images/docs_AWS_signup_button.png
Sign Up





_images/docs_AWS_form_credit_card.png
Amazon Web Seices S Up

L et G b

Enter Your Payment Information Below

Enter Your Biling Address

Je——





_images/docs_AWS_form_phone.png
i P —

" . N

[ ————

Ldentity Verification by Telephone

P trar

o smszmn o





_images/docs_psiturk_api_keys.png
uthors@psiturkorg ~

A Dashboard
T APIKeys





_images/docs_psiturk_regen_api_keys.png
C Regenerate API Keys





_images/docs_psiturk_ad_screenshot.png
27?2?7772

UNIVERSITY

Thank you for accepting
this HIT!

By clicking the following URL link, you will be taken to the
experiment, including complete instructions and an
informed consent agreement.

Warning: Please disable pop-up blockers before
continuing.

Begin Expel






_images/server_animation_frame5.png
Crowdworkers first interact with your study
ad hosted on the psiTurk Secure Ad Server.
This ensures that all participants can

view the ad and there are no browser
security errors.






_static/ajax-loader.gif





_images/docs_psiturk_sandbox_listing.png
Developer Sandbox. This site Is for test and development only. Leam more »

amalonmechanlcalturk sotsearyy U COMPUonsI Copnitin Lab | Account Settings | Sign O | Help

Artificial Artificial Intelligence Your Account Qualifications ailable now

@ forwhich you are qualified
B containing that pay at least § [l @ reavire Master Qualification ()

HITs containing '"NYU computational cognition lab'
1-1 of 1 Results

Sortby: [ HITs Available (most irst) o

Show all details | Hide all details

Stroop task View a HIT in this aroup
Requester: NYU Computational Coanition Lab HIT Expiration Date: Nov 25,2013 (23 hours 59 minutes) Rewa $1.00
Time Allotted: 4 hours. HITs Available: 1

7AQ | Contact Us | Careers at Amazon | Developers | Press | Poicies | Blog
©2005-2013 Amazon.com, Inc. or it Affites An amazoncom. company





_images/psiturk_logo_small_trans.png





_static/comment-close.png





_static/comment-bright.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





