
psiturk Documentation
Release 2.0

McDonnell, J.V., Martin, J.B., Markant, D.B., Coenen, A., Rich, A.S., and Gureckis, T.M.

Mar 21, 2021

Contents

1 User’s Guide 3
1.1 Forward . 3
1.2 Getting psiTurk Installed on Your Computer . 5
1.3 Getting setup with Amazon Mechanical Turk . 8
1.4 Getting setup with psiturk.org . 14
1.5 psiturk.org Secure Ad Server . 15
1.6 Sharing and replicating with the psiTurk.org Experiment Exchange 17
1.7 Quickstart . 17
1.8 Configuration Files . 17
1.9 Command-line Interface . 28
1.10 Configuring Databases . 49
1.11 Step-by-step Tutorials . 56
1.12 Anatomy of a basic psiTurk project . 62
1.13 Recording data . 71
1.14 Retrieving Datasets . 72
1.15 Customizing psiTurk . 74
1.16 Using external survey tools with psiTurk . 74
1.17 Running psiTurk on Heroku . 76
1.18 Running psiTurk on Amazon’s Elastic Compute Cloud (EC2) . 78
1.19 Understanding Error Messages . 80
1.20 Frequently Asked Questions . 80
1.21 Getting help . 81
1.22 Disclaimer . 82

2 Contributing to psiTurk 83
2.1 Contributing to psiTurk . 83
2.2 Project Roadmap . 86

3 API Reference 89
3.1 psiturk.js API . 89
3.2 psiturk.org RESTful API . 92

i

ii

psiturk Documentation, Release 2.0

Welcome to psiTurk’s documentation. To learn more about the project please visit https://psiturk.org.

To actually use psiTurk you’ll first need to install it on your local computer or server. Instructions can be found on
the Getting psiTurk installed on your computer page. Afterwards, head over to our quickstart guide , or for a more
detailed tutorial demonstrating how to setup a simple experiment with psiTurk, visit Getting up and running with the
basic Stroop task.

Contents 1

https://psiturk.org
install.html
https://www.psiturk.org/quick_start
stroop.html
stroop.html

psiturk Documentation, Release 2.0

2 Contents

CHAPTER 1

User’s Guide

1.1 Forward

Read this if you want to find out more about Amazon Mechanical Turk (AMT) and how psiTurk can help you run
web-based experiments on AMT painlessly and quickly. This section will also tell you what problems psiTurk does
and does not solve to help you gauge whether it will be useful to you.

1.1.1 Understanding the psiTurk design philosophy: An analogy

Back before music was entirely digital people got their music on cassette tapes. To play the cassette you needed a
player device (e.g., walkman or boombox). People would trade tapes, make copies of tapes, make mixtapes of their
favorite songs. It was awesome.

psiTurk is like a player but instead of playing music, it plays (i.e., runs) experiments. You download and install the
psiTurk application to your computer. This installs a command line tool psiturk which serves as a multi-function
“player.” It can (figuratively speaking) run, pause, eject, and configure a given experiment.

To make it useful though psiTurk needs something to play. You can download from our experiment exchange library
an archive which contains all the files specific to a given experiment. You basically “play” the downloaded experiment
using the psiturk command. You can easily switch experiments by downloading another experiment archive and
“playing” it. Even better, you can make your own experiments by remixing others (borrowing code from projects in
the experiment exchange) or building your own from scratch.

The goal of psiturk was to build the “player” so you can spend more of your time on the important part of your
research. . . the experiment (i.e., mix tape)!

Oh, and in case you missed it, “playing” someone else’s experiment posted to the experiment exchange basically
means independently replicating it!

1.1.2 What is Mechanical Turk?

Amazon Mechanical Turk (AMT) is an online platform that lets you post a wide variety of tasks to a large pool of
participants. Instead of spending weeks to run experiments in the lab, it lets you collect data of a large number of

3

http://psiturk.org/ee
http://psiturk.org/ee

psiturk Documentation, Release 2.0

people within a couple of hours.

Some key terminology for understanding the AMT model:

• HIT (Human Intelligence Task) - A unit of work (e.g. a psychology experiment)

• Requester - The person or entity that posts HITs (e.g. a researcher or lab)

• Worker - The person that completes HITs (i.e. a participant in your study)

Workers get paid a fixed amount for each HIT which is determined by the requester. Requesters can also make bonus
payments to specific workers. Amazon collects a 10% fee for each payment.

1.1.3 What is psiTurk?

AMT provides some very basic templates that you can use to design HITs (particularly questionnaires), but these
will most likely not serve your purposes as an experimenter. The psiTurk toolbox is designed to help you run fully-
customized and dynamic web-experiments on AMT. Specifically, it allows you to:

1. Run a web server for your experiment

2. Test your experiment

3. Interact with AMT to recruit, post HITs, filter, and pay participants (AMT workers)

4. Manage databases and export data

psiTurk also includes a powerful interactive command interface that lets you manage most of your AMT activity.

1.1.4 How do I host a psiTurk experiment?

psiTurk experiments can be hosted on almost anything that has an internet connection and a public port, such as an
office computer or laptop. You’ll need a static IP to prevent your experiment’s URL from changing. Users without
one (e.g., most home users) can use a dynamic DNS service to forward a URL to their dynamic IP. Here’s a list of free
DDNS providers. You also may need to forward a port from your home routers to you personal computer.

1.1.5 Do I have to learn how to code?

Yes. To run your experiment in a web browser you need to have at least some basic web programming skills (especially
using HTML, CSS, and JavaScript).

Fortunately there exist many resources and tutorials that can help get started. If you are completely new to web
programming, you might want to check out Codecademy, for example, for interactive tutorials on building websites.

Once you mastered the basics, you can take advantage of the vast number of libraries and tools that can help you to
build sharp and sophisticated experiments with the support of a large community of users. For specific questions, visit
stackoverflow.com.

To get you started, psiTurk provides a fully functioning example experiment (Getting up and running with the basic
Stroop task) that you can use as a template for your own study. psiTurk also includes a library of basic Javascript
functions (psiTurk API) that you can insert into your code to handle page transitions, load images, and record data.

4 Chapter 1. User’s Guide

http://en.wikipedia.org/wiki/Dynamic_DNS
http://dnslookup.me/dynamic-dns/
http://dnslookup.me/dynamic-dns/
http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/
http://www.codecademy.com/tracks/web
http://www.stackoverflow.com
step_by_step.html#getting-up-and-running-with-the-basic-stroop-task
step_by_step.html#getting-up-and-running-with-the-basic-stroop-task
api.html

psiturk Documentation, Release 2.0

1.2 Getting psiTurk Installed on Your Computer

psiTurk can be installed on any modern computer which supports Python (<= 2.7). However, currently psiTurk is
not supported on Windows (see below). It works well on most unix variants including Mac OS X, BSD, and Linux.
Installation is usually not difficult.

When psiTurk is successfully installed, you will simply have a new command line tool available called psiturk.
The psiturk command provides a number of functions to you including launching the server and interacting with
the Mechanical Turk and Amazon Web Services (AWS) systems.

1.2.1 Installation requirements

Installation of psiTurk requires:

1. A python installation (<= v2.7). We recommend the Enthought python distribution on Mac OS X.

2. The ‘‘pip‘‘ package manager. Directions on installing this are given below.

3. Access to a command line tool. (e.g., Terminal.app on Mac OS X)

4. A web browser. A WebKit compatible browser such as FireFox, Safari, or Chrome is recommended.

An additional requirement for actually using psiTurk to run experiments is an Internet connected computer capable
of receiving incoming requests.

1.2.2 Installation steps

To install the package there are two options currently. First, the current stable release of psiTurk is hosted on the
python package index pypi. As a result, it can easily be installed as a standard python package using the python
package manager tool pip. Alternatively, you can install directly from the development branch on github. The
following instructions describe the general process. In addition, system specific notes are provided below.

Install stable version via pypi

The easiest way to install psiTurk is via pip. Linux users will likely prefer to install pip as described below. Other-
wise, If you don’t already have pip, you can install it by typing the following in a terminal:

cd /tmp # Just to put us in a directory that will be cleaned up periodically
curl -O https://raw.githubusercontent.com/pypa/pip/develop/contrib/get-pip.py
python get-pip.py # If you get a permissions error, try typing sudo python get-pip.py

If you want a single system to run different versions of psiTurk (or other python packages) on a per-experiment basis,
follow the Virtual Environment instructions below.

Once pip is installed, type into a terminal:

pip install psiturk

If this doesn’t work, try

sudo pip install psiturk

If the install was successful you will have a new command psiturk available on your command line. You can check
the location of this command by typing

1.2. Getting psiTurk Installed on Your Computer 5

https://www.enthought.com/products/epd/free/
https://pypi.python.org/pypi
https://github.com/NYUCCL/psiTurk

psiturk Documentation, Release 2.0

which psiturk

Install directly from github

You can also install the bleeding-edge development version directly from github using pip. To install the latest stable
branch follow the instructions above to install pip and:

sudo pip install git+git://github.com/NYUCCL/psiTurk.git@master

If the install was successful you will have a new command psiturk available on your command line. You can check
the location of this command by typing

which psiturk

Updating from a previous version

To avoid compatibility issues, if you upgrade from a previous version it can be useful to first uninstall then reinstall
psiTurk using the following sequence of commands:

$ pip uninstall psiturk
$ git clone git@github.com:NYUCCL/psiTurk.git
$ cd psiTurk
$ sudo python setup.py install

Running inside a Virtual Environment

It can desirable to keep each of your experiments’ dependencies (python and python package versions) isolated from
each other. For example, if you want to install the development version of psiTurk (as described above) in one
experiment, but not all the others installed on your system, Virtual Environments provide a solution.

You can install via pip:

sudo pip install virtualenv virtualenvwrapper

And then start a new shell session. This will install the virtualenv tool as well as the supplementary virtualenvwrapper
tools that make working with virtualenvs easier. You create a virtual environment as follows (if mkvirtualenv is not
recognized follow the instructions here) :

$ mkvirtualenv my-experiment

Running virtualenv with interpreter /usr/bin/python2
New python executable in my-experiment/bin/python2
Also creating executable in my-experiment/bin/python
Installing setuptools, pip...done.

Then, at any point in the future, to activate the virtual environment use the workon command

$ workon my-experiment
(my-experiment) $ which python python pip easy_install

~/.virtualenvs/my-experiment/bin/python
~/.virtualenvs/my-experiment/bin/pip
~/.virtualenvs/my-experiment/bin/easy_install

6 Chapter 1. User’s Guide

http://virtualenv.readthedocs.org/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/install.html

psiturk Documentation, Release 2.0

As you can see, when the environment is active, running python or pip will run copies specific to your project. Any
packages installed with pip or easy_install will be installed inside your my-experiment virtualenv rather than system-
wide. Use the deactivate command to leave the virtualenv.

1.2.3 System-specific notes

Mac OS X

Apple users will need to install a C compiler via XCode; to do so, install XCode from the App store. Once you
have downloaded it, install the command line tools from the preferences menu as instructed here. For earlier versions
of Mac OS X (e.g., Snow Leopard) you may need to install XCode using the installation disc that came with your
computer. The command line tools are an option during the installation process for these systems.

Linux

psiTurk is relatively painless to install on most Linux systems since all four of the requirements listed above come
installed by default in most distributions.

If you encounter install problems when installing using pip as above, a likely cause is that you are missing the package
from your distribution that contains a needed header file. In this case, one way to troubleshoot the problem is to do a
web search for the name of your distribution and the name of the missing header file (which often appears in the error
text produced by a failed pip install). That search will likely turn up the name of the package for your distribution that
supplies the needed header file.

As an example, before installing psiTurk on a minimal Debian 7 server (such as the one provided by many server host-
ing companies) you will need to install some additional packages, as illustrated by the following example command:

aptitude install python-pip python-dev libncurses-dev

If you would like to use mysql as your backend database (which is optional, and can be done at any time), further
packages are needed. On a Debian system, they are:

aptitude install python-pymysql python-sqlalchemy libmysqlclient-dev

If you have additional specific issues, or if you can report the steps needed to install psiTurk on a particular Linux
distribution, please help us update the documentation!

Windows

psiTurk is currently not supported on Windows. This is due to a technical limitation in the ability to run server
processes on Windows. We currently recommend that Windows users try a cloud-based install such as openshift.

Cloud-based install (experimental)

If your local computer does not support psiTurk is it still possible to use the package by using a free hosting solution
such as openshift. Begin by creating an account at http://openshift.redhat.com/ and download the command line tools
at https://www.openshift.com/developers/rhc-client-tools-install

Create a python-2.7 application and add a PostgreSQL cartridge to the app

rhc app create psiturk python-2.7 postgresql-8.4 --from-code git://github.com/
→˓jbmartin/psiturk-on-openshift.git

1.2. Getting psiTurk Installed on Your Computer 7

http://stackoverflow.com/a/9353468/62179
https://www.openshift.com
https://www.openshift.com/
http://openshift.redhat.com/
https://www.openshift.com/developers/rhc-client-tools-install

psiturk Documentation, Release 2.0

or you can do this to watch the build

rhc app create -a psiturk -t python-2.7
rhc cartridge add -a psiturk20 postgresql-8.4

Add this upstream psiturk repo

cd psiturk
git remote add upstream -m master https://github.com/jbmartin/psiturk-on-openshift.git
git pull -s recursive -X theirs upstream master

Then push the repo upstream

git push

That’s it, you can now checkout your application at

http://psiturk-$YOURNAMESPACE.rhcloud.com

To access the your openshift hosted database run

rhc port forward -a psiturk

Connect to the database using your favorite SQL app, the PostgreSQL Local specs, and your credentials.

1.3 Getting setup with Amazon Mechanical Turk

psiTurk is a system for interfacing with Amazon Mechanical Turk. Thus, you need to create an account on Amazon’s
website in order to use it. There are a number of steps involved here which have to do with signing up with Amazon.
Luckily they are a one-time process (possibly once for your entire lab if everyone shares a single AWS account).

1.3.1 Creating an AWS account

Start by going to the Amazon Web Services page here. If you made a Mechanical Turk account prior to this, sign in to
your account and may skip to the next paragraph. Otherwise, click the Sign Up button at the top.

You should be redirected to a form asking for your contact information. Fill out the form and continue to the next
section.

8 Chapter 1. User’s Guide

http://aws.amazon.com

psiturk Documentation, Release 2.0

Next, you will need you credit card and your phone. The form should now ask for your credit card information.

1.3. Getting setup with Amazon Mechanical Turk 9

psiturk Documentation, Release 2.0

If you do not see the forms to fill in your credit card information, go to the Payment Methods page either by clicking
the link on the toolbar to the left or here. Enter in your credit card information. (Amazon will only charge you, if you
use their cloud services. Signing up for an account should not incur any charges.)

On the next page, you will be asked to enter your phone number. Have your phone nearby. After you put in your
phone number the webpage will display a 4-digit pin code and Amazon will call you. Enter the pin on your phone’s
keypad when prompted by the call.

10 Chapter 1. User’s Guide

https://portal.aws.amazon.com/gp/aws/developer/account?ie=UTF8&action=payment-method

psiturk Documentation, Release 2.0

1.3. Getting setup with Amazon Mechanical Turk 11

psiturk Documentation, Release 2.0

Amazon will ask you to select a support plan. For the purposes of psiTurk, you only need the Basic(Free) plan. Click
continue.

Your Amazon Web Service account should be set up now.

1.3.2 Obtaining AWS credentials

An AWS access key id and secret access key is required for posting new HITs to Mechanical Turk as well as monitoring
existing HITs. If you created an AWS access key and did not save your secret access key, you will need to create a
new access key. After April 21, 2014, AWS no longer allows users to retrieve their secret access key. Follow the steps
below to create a new key.

You can create your keys after you open an Amazon Web Services account. Your keys can be generated in the AWS
Management Console.

Click on the “Access Keys” tab. Your screen should look like this:

12 Chapter 1. User’s Guide

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

psiturk Documentation, Release 2.0

Press the “Create New Access Key” button to generate a set of access keys.

A popup window should appear on the screen to tell you that your access key has been created. Your access keys will
appear in the popup box.

If you do not see your access key, click the “Show Access Key” link in the popup box.

We recommend that you also download your access keys just in case. The “Download Key File” button will download
the keys onto your computer in a CSV file.

1.3. Getting setup with Amazon Mechanical Turk 13

psiturk Documentation, Release 2.0

The values of these keys need to be placed in your global ~/.psiturkconfig file. The file is by default located in
your home directory (see Configuration files for more info)

Note: If you are using IAM authentication, psiTurk requires that the AmazonMechanicalTurkFullAccess policy be
added to the credentials it uses to connect to MTurk. See here for how to set up an IAM user.

1.3.3 Creating an AMT Requester account

To use your AWS keys to interface with Amazon Mechanical Turk, you need to create a requester account. Please see
Amazon’s instructions for this. In particular, it is necessary to at least once login to the requester site (http://requester.
mturk.com) and also to at least once login to the sandbox requester site (https://requestersandbox.mturk.com), so that
you can agree to the terms of service.

1.3.4 Linking funds

Under construction.

1.3.5 Additional instructions

Under construction.

1.4 Getting setup with psiturk.org

psiturk.org is a cloud-based system which provides users with information about their hits (who has accepted the
hit, where they are located, etc. . .) and which provides a SSL-signed secure Ad server (ensuring that the majority of
Workers can access your task). It is offered as a free service to anyone who uses psiTurk.

Note: To do anything beyond local testing a psiturk.org account is currently required.

1.4.1 Creating a psiturk.org account

The first step in using psiturk.org is to sign up with your email address. A free account can be created at https:
//psiturk.org/register.

1.4.2 Obtaining psiturk.org API credentials

To prevent your email and password from being passed repeatedly over the Internet when using psiturk.org, you access
the psiturk.org API services using an API key (similar to how you interface with Amazon Mechanical Turk). To obtain
your personal API keys login to psiturk.org (https://psiturk.org/login). On the main dashboard page, select the blue
dropdown menu on the top right hand side of the page (shows your email address) and select “API Keys”. Copy these
keys into your ~/.psiturkconfig file.

14 Chapter 1. User’s Guide

configuration.html
http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/SetUp.html#create-iam-user-or-role
http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/SetUp.html
http://requester.mturk.com
http://requester.mturk.com
https://requestersandbox.mturk.com
https://psiturk.org/register
https://psiturk.org/register
amt_setup.html
https://psiturk.org/login

psiturk Documentation, Release 2.0

At any time you can regenerate these keys on the same page by pressing the “Regenerate API Keys” button.

At that point any old keys will no longer work, and you will need to update your ~/.psiturkconfig file again.
This way

1.5 psiturk.org Secure Ad Server

Participants recruited via Mechanical Turk first interact with your task via ads. Ads are simply the digital version of
hanging a poster or flyer around your university building in order to recruit participants. Technically, ads are snippets
of HTML code that describe what your task is about and what you’re offering for compensation. As a result, they are
the front line for any subject recruitment online. It’s easy to overlook the importance of a good ad, and making that ad
visible to as many participants as possible.

See also:

Getting setup with psiturk.org Use of the Secure Ad Server requires an account on psiturk.org.

1.5.1 Ads, Amazon Mechanical Turk, and the External HIT type

Any task (or HIT) which you deploy on your own server is listed using the “external HIT” type (a special name that
Amazon uses for tasks which are hosted on external webservers). For these types of tasks, ads show up in users’
browsers as a HTML document. Due to recent changes in browser security, if your HTML is not encrypted and signed
using an “official” SSL certificate (e.g., https://myschool.edu/myad.html works and the certificate signing authority is
official) then the ad won’t display to potential participants at all!

There’s a good discussion of this issue here, here, and on Amazon’s own website.

This is crazy!

What’s worse is that many universities are not able to provide individuals with a signed SSL certificate. If that is the
case, you can’t really use the external HIT mechanism without getting an account on some web hosting site.

However, the psiturk Secure Ad Server solves this problem for all researchers.

1.5. psiturk.org Secure Ad Server 15

psiturk_org_setup.html
http://wiki.bcs.rochester.edu/HlpLab/MTurkExperiments
http://stackoverflow.com/questions/19801682/why-does-the-mturk-sandbox-only-display-my-hits-in-internet-explorer
https://www.mturk.com/mturk/help?helpPage=worker#when_mixed_mode

psiturk Documentation, Release 2.0

Rather than getting your own signed certificate (a technically challenging process), when you use psiTurk, you can
host your ad with us via https://ad.psiturk.org via a custom and unique URL made especially for you. We have already
gone through the steps of getting an official, signed SSL certificate so you don’t have to! psiTurk posts your custom
ad text with us, and then participants access your task by first interacting with our secure server. We show them the
ad, then forward them to you. No hassle, more potential participants!

A full “visual explanation” of the Secure Ad Server is provided here. Basically, you post the HTML of you “ad” to the
psiturk.org cloud. Workers view the ad on the cloud server and decide if they want to accpet. If so they are forwarded
to your local server or computer to complete the task.

1.5.2 Why use the psiturk.org Secure Ad Server?

As should be obvious, psiTurk already gets around a major technical hurdle for many scientists. However, the psiTurk
Secure Ad Server not only serves up your SSL-signed Ad, but also provides you with some valuable data about people
who view your HIT, people who accept it, and what other task they have completed on the psiTurk meta-platform.
This can be very useful data. For example, when you use the psiTurk Ad server you can find out if your participants
have done a version of your experiment before!

The public API for this data is coming soon, but just know that when you host your Amazon Mechanical Turk ads
with us you are helping to build a valuable resource about which participants have done which types of experiments.
This can be used to help filter your data or prevent certain participants from doing experiments for which they have
already possibly been exposed to the important manipulation.

1.5.3 Sound great, how do I use it?

When you create a HIT from the command line in psiTurk your ad is posted to our servers. We begin forwarding
people to your website instantly. You ad is never deleted (unless you want to delete it). Soon, you will be able to access

16 Chapter 1. User’s Guide

http://ad.psiturk.org/
http://psiturk.org/ad_server

psiturk Documentation, Release 2.0

statistics about who view, accepted, and returned your HIT and what other tasks they have completed on psiTurk. We
also have plans to enable alternative ways of posting Ads to psiTurk including through a simple web interface. This
would then allow researchers using survey-type (via Google Forms or Qualtrics) to take advantage of the features of
the Secure Ad Server as well.

1.6 Sharing and replicating with the psiTurk.org Experiment Ex-
change

Under construction.

1.7 Quickstart

A simple quick start guide to running an existing psiTurk experiment is hosted here.

1.8 Configuration Files

There are two types of configuration files for psiTurk. Configuration files contain information needed to run an
experiment as well as options which control how psiTurk behaves.

The first file is a “global” configuration file and resides in your home folder (~/.psiturkconfig). The second file is a
“local” configuration file and resides in the folder of each experiment.

In general the “global” configuration file sets project-wide configuration options (i.e., those you want set the same for
all the experiments or projects you are working on). The “local” configuration file contains the unique settings for
individual experiments.

Note: In general, changes to either the local and global file require restarting the server process as it may change the
behavior. Generally it is best to edit these files while psiturk is not running, and then restart the command shell.

1.8.1 Global configuration file

The global configuration file resides in your home folder in a “dot” file (/.psiturkconfig). This file is created automat-
ically either the first time you run the psiturk command line tool or the first time you run psiturk-setup-example. The
default file looks like this:

[AWS Access]
aws_access_key_id = YourAccessKeyId
aws_secret_access_key = YourSecretAccessKey
aws_region = us-east-1

[psiTurk Access]
psiturk_access_key_id = YourAccessKeyId
psiturk_secret_access_id = YourSecretAccessKey

Other options can be added if you would like those to be global to all your projects. The default options include your
access credentials/API keys for Amazon Web Services (and Mechanical Turk) as well as psiturk.org. You can learn
how to obtain proper values for these settings by following those links.

1.6. Sharing and replicating with the psiTurk.org Experiment Exchange 17

http://psiturk.org/quick_start/
amt_setup.html
psiturk_org_setup.html

psiturk Documentation, Release 2.0

You can customize the location of this file to something other than the ~ folder by setting the PSI-
TURK_GLOBAL_CONFIG_LOCATION in your shell environment.

1.8.2 Local configuration file

The local configuration file is specific to each project and resides in a file called config.txt in the top level of the project.
Here is what config.txt looks like for the default psiTurk stroop project:

[HIT Configuration]
title = Stroop task
description = Judge the color of a series of words.
amt_keywords = Perception, Psychology
lifetime = 24
us_only = true
approve_requirement = 95
number_hits_approved = 0
require_master_workers = false
contact_email_on_error = youremail@gmail.com
ad_group = Default psiTurk Stroop Example
psiturk_keywords = stroop
organization_name = New Great University
browser_exclude_rule = MSIE, mobile, tablet
allow_repeats = false

[Database Parameters]
database_url = sqlite:///participants.db
table_name = turkdemo

[Server Parameters]
host = localhost
port = 22362
cutoff_time = 30
logfile = server.log
loglevel = 2
debug = true
login_username = examplename
login_pw = examplepassword
threads = auto
secret_key = 'this is my secret key which is hard to guess, i should change this'
#certfile = <path_to.crt>
#keyfile = <path_to.key>
#adserver_revproxy_host = www.location.of.your.revproxy.sans.protocol.com
#adserver_revproxy_port = 80 # defaults to 80
#server_timeout = 30

[Task Parameters]
experiment_code_version = 1.0
num_conds = 1
num_counters = 1

[Shell Parameters]
launch_in_sandbox_mode = true
#bonus_message = "Thanks for participating!"
use_psiturk_ad_server = true
ad_location = false

This file is divided into a few sections which are described in detail. Each field is described by name and includes in

18 Chapter 1. User’s Guide

stroop.html

psiturk Documentation, Release 2.0

brackets the type of data it expects.

Note: Any configuration option can actually be placed in either the global or local configuration file. For example,
if you wanted to run different project from different AWS accounts, you could add an [AWS access] section
to move the local config.txt files and have different values in different folders. Likewise, if you wanted to have
the same organization_name in all your experiments, you could add a [HIT Configuration] section with an
organization_name field to your ~/.psiturkconfig file. Keep in mind that settings in the local ‘config.txt‘ file always
override settings in the global ‘~/.psiturkconfig‘ file.

HIT Configuration

The HIT Configuration section contains details about your Human Intelligence Task. An example looks like this:

[HIT Configuration]
title = Stroop task
description = Judge the color of a series of words.
amt_keywords = Perception, Psychology
lifetime = 24
us_only = true
approve_requirement = 95
number_hits_approved = 0
require_master_workers = false
contact_email_on_error = youremail@gmail.com
ad_group = My research project
psiturk_keywords = stroop
organization_name = New Great University
browser_exclude_rule = MSIE, mobile, tablet
allow_repeats = false

title [string]

The title is the title of the task that will appear on the AMT worker site. Workers often use these fields to search for
tasks. Thus making them descriptive and informative is helpful.

description [string]

The description is the accompanying text that appears on the AMT site. Workers often use these fields to search for
tasks. Thus making them descriptive and informative is helpful.

keywords [comma separated string]

keywords Workers often use these fields to search for tasks. Thus making them descriptive and informative is helpful.

lifetime [integer]

The lifetime is how long your HIT remains visible to workers (in hours). After the lifetime of the HIT elapses, the HIT
no longer appears in HIT searches, even if not all of the assignments for the HIT have been accepted.

This is in contrast to the HIT duration, which specifies how long workers have to complete your task, and which you
provide at HIT creation time. See the documentation on hit create for more details.

1.8. Configuration Files 19

../command_line/hit.html#hit-create

psiturk Documentation, Release 2.0

us_only [true | false]

us_only controls if you want this HIT only to be available to US Workers. This is not a failsafe restriction but works
fairly well in practice.

approve_requirement [integer]

approve_requirement sets a qualification for what type of workers you want to allow to perform your task. It is
expressed as a percentage of past HITs from a worker which were approved. Thus 95 means 95% of past tasks were
successfully approved. You may want to be careful with this as it tends to select more seasoned and expert workers.
This is desirable to avoid bots and scammers, but also may exclude new sign-ups to the system.

number_hits_approved [integer]

number_hits_approved is important to use in conjunction with approved_requirement, because mturk will default
approve_requirement to 100% until a worker has at least 100 HITs approved. Override that behavior by setting
number_hits_approved to something like 100.

require_master_workers [true | false]

require_master_workers will make it so that only workers with the “Master” qualification can take your study. See
Who Are Amazon Mechanical Turk Masters?

Note: Master workers cost an extra 5%.

See also:

The following options help configure the psiturk.org Secure Ad Server.

Getting setup with psiturk.org How to get an account on psiturk.org.

psiturk.org Secure Ad Server An overview of the purpose and features of the Secure Ad Server.

contact_email_on_error [string - valid email address]

contact_email_on_error is the email you would like to display to workers in case there is an error in the task. Workers
will often try to contact you to explain what when want and request partial or full payment for their time. Providing a
email address that you monitor regularly is important to being a good member of the AMT community.

ad_group [string]

ad_group is a unique string that describes your experiment. All HITs and Ads with the same ad_group string will be
grouped together in your psiturk.org dashboard. To create a new group in your dashboard simply create a new unique
string. The best practice is to group all experiments from the same “project” with the same ad_group but assign
different ad_group identifiers to different project (e.g., if two students in a lab were working on different things but
shared a psiturk.org account then they might use different ad_group identifiers to keep things organized.)

20 Chapter 1. User’s Guide

https://requester.mturk.com/help/faq#what_are_masters
../psiturk_org_setup.html
../secure_ad_server.html

psiturk Documentation, Release 2.0

psiturk_keywords [comma separated string]

psiturk_keywords [string, comma separated] are a list of key words that describe your task. The purpose of these
keywords (distinct from the keywords described above) is to help other researchers know what your task involves. For
example, you might include the keyword deception if your experiment involves deception. If it involves a common
behavioral task like “trolly problems” you might include that as well. In the future we hope to allow researchers to
query information about particular workers and task to find out if your participants are naive to particular types of
manipulations. You should be careful not to include too general of terms here. For example, a researcher might want
to exclude people who in the past had participated in a psychology study involving deception. They probably don’t
care to exclude people who did a “decision making task”. Thus, being specific and using important keywords that are
likely to be recognized by the research community is the best approach. (Ask yourself, if I wanted to exclude people
who had done this study from a future study what keywords would I search for.)

organization_name [string]

organization_name [string] is just an identifier of your academic institution, business, or organization. It is used
internally by psiturk.org.

browser_exclude_rule [comma separated string]

browser_exclude_rule is a set of rules you can apply to exclude particular web browsers from performing your task.
When a users contact the Secure Ad Server the server checks to see if the User Agent reported by the browser matches
any of the terms in this string. It if does the worker is shown a message indicating that their browser is incompatible
with the task.

Matching works as follows. First the string is broken up by the commas into sub-string. Then a string matching rule
is applied such that it counts as a match anytime a sub-string exactly matches in the UserAgent string. For example, a
user agent string for Internet Explorer 10.0 on Mac OS X might looks like this:

Mozilla/5.0 (compatible; MSIE 10.0; Macintosh; Intel Mac OS X 10_7_3; Trident/6.0)

This browser could be excluded by including this full line (see this website for a partial list of UserAgent strings).
Also “MSIE” would match this string or “Mozilla/5.0” or “Mac OS X” or “Trident”. Thus you should be careful in
applying these rules.

There are also a few special terms that apply to a cross section of browsers. mobile will attempt to deny any browser for
a mobile device (including cell phone or tablet). This matching is not perfect but can be more general since it would
exclude mobile version of Chrome and Safari for instance. tablet denys tablet based computers (but not phones).
touchcapable would try to exclude computers or browser with gesture or touch capabilities (if this would be a problem
for your experiment interface). pc denies standard computers (sort of the opposite to the mobile and tablet exclusions).
Finally bot tries to exclude web spiders and non-browser agents like the Unix curl command.

allow_repeats [boolean]

allow_repeats specifies whether participants may complete the experiment more than once. If it is set to false (the
default), then participants will be blocked from completing the experiment more than once. If it is set to true, then
participants will be able to complete the experiment any number of times.

Note that this option does not affect the behavior when a participant starts the experiment but the quits or refreshes the
page. In those cases, they will still be locked out, regardless of the setting of allow_repeats.

1.8. Configuration Files 21

../secure_ad_server.html
http://www.useragentstring.com/pages/Browserlist/

psiturk Documentation, Release 2.0

Database Parameters

The Database Parameter section contains details about your database. An example looks like this:

[Database Parameters]
database_url = sqlite:///participants.db
table_name = turkdemo

See also:

Configuring Databases For details on how to set up different databases and get your data back out.

Recording Data For details on how to put data into your database.

database_url [url string]

database_url containes the location and access credentials for your database (i.e., where you want the data from your
experiment to be saved).

To use a SQLLite data base, simply type the name of the file:

database_url = sqlite:///participants.db

This example would write to a database file with the name “participants.db” in the top-level directory of your experi-
ment.

To use an existing MySQL database:

database_url = mysql://USERNAME:PASSWORD@HOSTNAME:PORT/DATABASE

where USERNAME and PASSWORD are your access credentials for the database, HOSTNAME and is the DNS
entry or IP address for the database, PORT is the port number (standard is 3306) and DATABASE is the name of the
database on the server. It is wise to test that you can connect to this url with a MySQL client prior to launching.

table_name [string]

table_name specifies the table of the database you would like to write to. IMPORTANT: psiTurk prevents the same
worker from performing as task by checking to see if the worker appears in the current database table already. Thus,
for a single experiment (or sequence of related experiments) you want to keep the table_name value the same. If you
start a new design where it not longer matters that someone has done a previous version of the task, you can change
the table_name value and begin sorting the data into a new table.

Server Parameters

The Server Parameter section contains details about your local web server process that you launch from the command
line. An example looks like this:

[Server Parameters]
host = 0.0.0.0
port = 22362
cutoff_time = 30
logfile = server.log
loglevel = 2
debug = true

(continues on next page)

22 Chapter 1. User’s Guide

../configure_databases.html
../recording.html

psiturk Documentation, Release 2.0

(continued from previous page)

login_username = examplename
login_pw = examplepassword
threads = auto
#certfile = <path_to.crt>
#keyfile = <path_to.key>
#adserver_revproxy_host = www.location.of.your.revproxy.sans.protocol.com
#adserver_revproxy_port = 80
#server_timeout = 30

host [string]

host specifies the hostname of your server. There are really only two meaningful values of this. If host is set to
‘localhost’ or ‘127.0.0.1’ then your experiment will only work for testing (i.e., even if you have an internet addressable
computer, people outside of your local machine will not be able to connect). This is a security feature for developing
and testing your application.

If host is set to 0.0.0.0 or the actual ip address or hostname of your current computer then your task will be available
to the general internet.

port [integer]

This is the port that your server will run on. Typically a number greater than 5000 will work. If another process is
already using a given port you will usually get an error message.

cutoff_time [integer]

Maximum time in minutes to finish the task. The connection will be closed after this time is up.

logfile [string]

The location of the server log file. Error messages for the server process are not printed to the terminal or command
line. To help in debugging they are stored in a log file of your choosing. This file will be located in the top-level folder
of your project.

loglevel [integer]

Sets how “verbose” the log messages are. See the python logging library.

debug [true | false]

If debug is true, if there is an internal server error helpful debugging information will be printed into the webpage of
people taking the experiment. IMPORANT this should be set to false for live experiments to prevent possible security
holes.

1.8. Configuration Files 23

http://docs.python.org/2/library/logging.html#logging-levels

psiturk Documentation, Release 2.0

login_username [string]

If you want to have custom-login section of your web application (e.g., see customizing psiturk) then you can set a
login and password on certain web pages urls/routes. By default if you aren’t using them, this is ignored.

login_pw [string]

If you want to have custom-login section of your web application (e.g., see customizing psiturk) then you can set a
login and password on certain web pages urls/routes. By default if you aren’t using them, this is ignored.

threads [auto | integer]

threads controls the number of process threads the the psiturk webserver will run. This enables multiple simultanous
connections from internet users. If you select auto it will set this based on the number of processor cores on your
current computer.

certfile [string]

Warning: SSL support for the psiturk server is an experimental feature.

certfile should be the /path/to/your/domain/SSL.crt

If both certfile and keyfile are set and the files readable, then the psiturk gunicorn server will run with ssl. You will
need to execute the psiturk with privileges sufficient to read the keyfile (typically root). If you run psiturk with sudo
and if you are using a virtual environment, make sure to execute the full path to the desired psiturk instance in your
environment.

If you want to do this, you are responsible for obtaining your own cert and key. It is not necessary to run the psiturk
server with ssl in order to use your own ad server. You can have a proxy server such as nginx in front of psiturk/gunicorn
which handles ssl connections. See this gist for an example. However, if you configure the psiturk server to run
with SSL by setting the ‘certfile‘ and ‘keyfile‘ here, you must use a proxy server in front of psiturk to serve the
content in your /static folder. An SSL-enabled psiturk/gunicorn server will not serve static content – it will only
serve dynamic content.

See http://docs.gunicorn.org/en/stable/deploy.html for more information on setting up proxy servers with the psiturk
(gunicorn) server.

See also:

use_psiturk_ad_server How to use your own ad_location. Does not require that the psiTurk server be SSL-enabled.
(Although you will still need your own SSL certificate and key)

keyfile [string]

Warning: SSL support for the psiturk server is an experimental feature.

certfile should be the /path/to/your/domain/private-SSL.key. Although .crts can contain .key files within them, psiturk
currently requires that you point to separate .crt and .key files for this experimental feature to work.

24 Chapter 1. User’s Guide

../customizing.html
../customizing.html
https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59
http://docs.gunicorn.org/en/stable/deploy.html
shell_parameters.html#use-psiturk-ad-server-true-false

psiturk Documentation, Release 2.0

See the documentation for certfile for more information.

adserver_revproxy_host [string]

Normally when you create an ad on the psiturk ad server (hit create. . .), your external ip address is fetched and
combined with the port that your psiturk gunicorn server is running on (the same port set in your config.txt). The
psiTurk ad server directs all traffic directly to the psiturk gunicorn server.

If you want to put a reverse proxy in front of the psiturk gunicorn server (such as apache or nginx), set the hostname or
ip address of the reverse proxy here. Set it even if it’s the same as your external ip. Leave the protocol off (i.e., don’t
add http:// to the front). (The psiturk ad server will add http:// to the front of whatever you set here.)

If your reverse proxy port is different from 80, set it in adserver_revproxy_port.

Note: If you want to host your own ad, see the documentation for use_psiturk_ad_server and ad_location. The
adserver_revproxy_host and adserver_revproxy_port settings are only used if you are using the psiTurk ad server.

See also:

• use_psiturk_ad_server

• ad_location

adserver_revproxy_port [integer]

Defaults to port 80 (the standard http port).

See the documentation for adserver_revproxy_port for more information.

Note: If you are hosting your experiment on rhcloud.com, this setting is ignored and 80 will always be used.

server_timeout [integer]

Number of seconds gunicorn will wait before killing an unresponsive worker. This timeout applies to any individual
request.

If you expect that your experiment may take more than 30 seconds to respond to a request, you may want to increase
this.

Defaults to 30 seconds.

Note: See http://docs.gunicorn.org/en/stable/settings.html#timeout for more information.

Task Parameters

The Task Parameters section contains details about your task. An example looks like this:

1.8. Configuration Files 25

shell_parameters.html#use-psiturk-ad-server-true-false
shell_parameters.html#ad-location-false-string
http://docs.gunicorn.org/en/stable/settings.html#timeout

psiturk Documentation, Release 2.0

[Task Parameters]
experiment_code_version = 1.0
num_conds = 1
num_counters = 1

experiment_code_version [string]

Often you might run a couple different versions of an experiment during a research project (e.g., Experiment 1 and 2
of a paper). experiment_code_version is a string which is written into the database along with your data helping you
remember which version of the code each participant was given.

This variable is used by the server along with num_conds and num_counters to ensure an equal number of workers per
condition for the current experiment_code_version. In other words, changing the experiment_code_version resets the
number of workers per condition to [0 0].

num_conds [integer]

psiTurk includes a primitive system for counterbalancing participants to conditions. If you specify a number of
condition greater than 1, then psiTurk will attempt to assign new participants to conditions to keep them all with equal
N. It also takes into account the time delay between a person being assigned to a condition and completing a condition
(or possibly withdrawing). Thus, you can be fairly assured that after running 100 subjects in two conditions each
condition will have 50+/- completed participants.

Note: If you want to reset the random assignment when changing num_conds, update the experiment_code_version.

num_counters [integer]

num_counters is identical to num_cond but provides an additional counterbalancing factor beyond condition. If
num_counters is greater than 1 then psiTurk behaves as if there are num_cond*num_counters conditions and assigns
subjects randomly to the the expanded design. See Issue #53 for more info.

Shell Parameters

The Shell Parameters section contains details about the psiturk shell.

[Shell Parameters]
launch_in_sandbox_mode = true
bonus_message = "Thanks for participating!"
use_psiturk_ad_server = true
ad_location = false

launch_in_sandbox_mode [true | false]

If set to true, the psiturk shell will launch in sandbox mode. if set to false, the shell will launch in live mode. We
recommend leaving this option to true to lessen the chance of accidentally posting a live HIT to mTurk.

See also:

Overview of the command-line interface The basic features of the psiTurk command line.

26 Chapter 1. User’s Guide

https://github.com/NYUCCL/psiTurk/issues/53
../command_line_overview.html

psiturk Documentation, Release 2.0

bonus_message [string]

If set to a string, automatically uses this string as the message to participants when bonusing them for an assignment.
If not set, you will be prompted to type in a message each time you bonus participants. (This message is required by
AMT.)

use_psiturk_ad_server [true | false]

Warning: Non-use of the psiturk ad server is an experimental feature.

If set to true, then the psiTurk secure ad server functionality will be enabled, and your ad will be hosted on psiturk.org
when creating hits on AMT.

If you want to host your own ad, then set this to false. You are responsible for obtaining your own cert and key and for
configuring your own proxy server in front of psiturk/gunicorn. It is not necessary to also include the cert and key in
the [Server Parameters] section – you can have a proxy server such as nginx in front of psiturk/gunicorn which handles
SSL connections. Although if you don’t have your SSL certs in both places, then traffic between your proxy server
and psiturk/gunicorn will not be encrypted. Perhaps that doesn’t matter to you though if you configure your proxy
server to pass traffic to your gunicorn/psiturk server via localhost.

If set to false then you must also specify your custom ad_location (see below).

See also:

See the [Server Parameters] certfile and keyfile configs for ssl-enabling the psiturk server (although this is not required
to use your own ad location).

See also:

See this gist for an example nginx psiturk SSL configuration

ad_location [false | string]

Warning: Non-use of the psiturk ad server is an experimental feature.

ad_location is only used if use_psiturk_ad_server is false. Set to whatever you set up your proxy server to listen on.
This will be sent directly to AMT when creating your HITs to tell AMT where to look for your ad.

Format is as follows:

https://<host>:<port>/ad

Some gotcha’s:

• don’t forget the /ad at the end. And don’t append a trailing backslash.

• you must use https:// or AMT will explode.

• the <port> should be the port your proxy server (such as nginx) is running on, not the psiturk port. See the gist
for a full example.

See also:

See the information for the use_psiturk_ad_server configuration above as well.

1.8. Configuration Files 27

server_parameters.html
https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59
https://gist.github.com/deargle/5d8c01660a77b8090a2cd24efcda2c59

psiturk Documentation, Release 2.0

1.9 Command-line Interface

The psiTurk shell is a simple, interactive command line interface which allows users to communicate with Amazon
Mechanical Turk, psiturk.org, and their own experiment servers.

1.9.1 Starting the psiTurk shell

Usage

The psiTurk shell can be launched from any psiTurk project folder (i.e., any folder with a config.txt file) by
entering the command

psiturk

in the terminal.

Options

-v, --version

Print the currently installed version of psiTurk and exit.

-c, --cabinmode

Launch psiturk in cabin (offline) mode. This allows you to develop test experiments locally without an internet con-
nection. Cabin mode offers only limited functionality, and lacks the amt, db, hit, mode, and worker commands.

-s, --script <filename>

Run a list of commands from a text file, then exit. Each line in the file is treated as a command.

1.9.2 The psiTurk shell prompt

The psiTurk shell prompt looks something like this:

[psiTurk server:off mode:sdbx #HITs:0]$

and contains several pieces of useful information.

Server field

The server field will generally be set to on or off and denotes whether the experiment server is running. If the
server field says unknown, this likely means that a server process is running from an improperly closed previous
psiTurk shell session. In this case, you may need to manually kill the processes in the terminal or restart your terminal
session.

Mode field

The mode field displays the current mode of the shell. In the full psiturk shell, the mode will be either sdbx (sandbox)
or live. While in cabin mode, the mode will be listed as cabin. More about the psiturk shell mode can be found
here.

28 Chapter 1. User’s Guide

./mode.html

psiturk Documentation, Release 2.0

#HITs field

The #HITs field displays the number of HITs currently active, either in the worker sandbox when in sandbox mode
or on the live AMT site when in live mode. The #HITs field is not displayed in cabin mode.

1.9.3 amt_balance command

Usage

amt_balance

The amt_balance command displays your current AMT balance, or your worker sandbox balance (always
$10,000.00) if you are in sandbox mode.

Example

Checking your balance in sandbox mode:

[psiTurk server:off mode:sdbx #HITs:1]$ amt_balance
$10,000.00

1.9.4 config command + subcommands

Contents

• config command + subcommands

– Description

– config print

* Example

– config reload

* Example

– config help

Description

The config command is used with a variety of subcommands to control the current configuration context

config print

Prints the current configuration context (both local and global config options).

See also:

Configuration files More info about the global and local configuration files.

1.9. Command-line Interface 29

configuration.html

psiturk Documentation, Release 2.0

Example

[psiTurk server:off mode:sdbx #HITs:0]$ config print
[AWS Access]
aws_region=us-east-1
aws_access_key_id=XXXXXX
aws_secret_access_key=XXXX
...
[Shell Parameters]
launch_in_sandbox_mode=true

[psiTurk server:on mode:sdbx #HITs:0]$

config reload

Reloads the current config context (both local and global files). This will cause the server to restart.

Example

[psiTurk server:on mode:sdbx #HITs:0]$ config reload
Reloading configuration requires the server to restart. Really reload? y or n: y
Shutting down experiment server at pid 82701...
Please wait. This could take a few seconds.
Experiment server launching...
Now serving on http://localhost:22362

[psiTurk server:off mode:sdbx #HITs:0]$

config help

Display a help message concerning the config subcommand.

1.9.5 db command + subcommands

Contents

• db command + subcommands

– db get_config

* Usage

* Example

– db use_local_file

* Usage

* Example

– db use_aws_instance

* Usage

* Example

30 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

– db aws_list_regions

* Usage

* Example

– db aws_get_region

* Usage

* Example

– db aws_set_region

* Usage

* Example

– db aws_list_instances

* Usage

* Example

– db aws_create_instance

* Usage

* Example

– db aws_delete_instance

* Usage

* Example

The db command is used with a number of subcommands to create and configure database instances. More informa-
tion about database configuration can be found on the Configuring Databases page.

Note: The aws_ subcommands are used to interact with the Amazon Web Services Relational Database Server
(RDS) cloud service.

db get_config

Usage

db get_config

Display the current setting of the database (database_url).

Example

[psiTurk server:off mode:sdbx #HITs:1]$ db get_config
Current database setting (database_url):

sqlite:///participants.db

1.9. Command-line Interface 31

../configure_databases.html
../config/database_parameters.html#database-url-url-string

psiturk Documentation, Release 2.0

db use_local_file

Usage

db use_local_file [<filename>]

Switch the current database to a local SQLite file with name <filename> (default is participants.db), or enter without
filename and provide name when prompted.

Example

Setting database to a local SQLite file:

[psiTurk server:off mode:sdbx #HITs:1]$ db use_local_file
Enter the filename of the local SQLLite database you would like to use
→˓[default=participants.db]: example.db
Updated database setting (database_url):

sqlite:///example.db
[psiTurk server:off mode:sdbx #HITs:1]$

db use_aws_instance

Usage

db use_aws_instance [<instance_id>]

Switch the current database to a given instance <instance_id> on AWS RDS. Enter without an argument to display a
list of instances from which to choose.

Example

Using an RDS database instance:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_aws_instance mydb
Switching your DB settings to use this instance. Are you sure you want to do this? y
enter the master password for this instance: PasswordXXXXX
AWS RDS database instance mydb selected.
Here are the available database tables

myexp
Enter the name of the database you want to use or a new name to create a new one:
→˓myexp
Successfully set your current database (database_url) to

mysql://UsernameXXXXX:PasswordXXXXX@mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.
→˓com:3306/myexp

db aws_list_regions

32 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

Usage

db aws_list_regions

Lists available AWS regions.

Example

psiTurk server:off mode:sdbx #HITs:1]$ db aws_list_regions
Avaliable AWS regions:

us-east-1 (currently selected)
us-gov-west-1
eu-west-1
us-west-1
us-west-2
sa-east-1
ap-northeast-1
ap-southeast-1
ap-southeast-2

db aws_get_region

Usage

db aws_get_region

Displays the current AWS region you are communicating with.

Example

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_get_region
us-east-1

db aws_set_region

Usage

db aws_set_region [<region_name>]

Sets the AWS region you are currently using to <region-name>. Enter without an argument to display a list of regions
from which to choose.

Example

Setting region to us-west-1:

1.9. Command-line Interface 33

psiturk Documentation, Release 2.0

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_set_region us-west-1
Region updated to us-west-1

db aws_list_instances

Usage

db aws_list_instances

List instances and statuses in the current region/AWS account.

Example

1. Listing instances when there are none active in your region:

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_list_instances
There are no DB instances associated with your AWS account in region us-east-1

2. Listing instances when there is an active instance in your region:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-
→˓east-1

Instance ID: mydb
Status: available

db aws_create_instance

Usage

db aws_create_instance [<instance_id> <size> <username> <password>
<dbname>]

Create an RDS instance using MySQL on the AWS cloud, with the given instance id, size, username, password,
and database name. db aws_create_instance can also be run interactively by running the command without
parameters.

Example

Interactively creating a database instance:

[psiTurk server:off mode:sdbx #HITs:1]$ db aws_create_instance

Ok, here are the rules on creating instances:

instance id:
Each instance needs an identifier. This is the name
of the virtual machine created for you on AWS.

(continues on next page)

34 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

(continued from previous page)

Rules are 1-63 alphanumeric characters, first must
be a letter, must be unique to this AWS account.

size:
The maximum size of you database in GB. Enter an
integer between 5-1024

master username:
The username you will use to connect. Rules are
1-16 alphanumeric characters, first must be a letter,
cannot be a reserved MySQL word/phrase

master password:
Rules are 8-41 alphanumeric characters

database name:
The name for the first database on this instance. Rules are
1-64 alphanumeric characters, cannot be a reserved MySQL word

enter an identifier for the instance (see rules above): mydb
size of db in GB (5-1024): 5
master username (see rules above): UsernameXXXXX
master password (see rules above): PasswordXXXXX
name for first database on this instance (see rules): myexp

Creating AWS RDS MySQL Instance
id: mydb
size: 5 GB
username: UsernameXXXXX
password: PasswordXXXXX
dbname: myexp
type: MySQL/db.t1.micro

Be sure to store this information in a safe place.
Please wait 5-10 minutes while your database is created in the cloud.
You can run 'db aws_list_instances' to verify it was created (status
will say 'available' when it is ready
[psiTurk server:off mode:sdbx #HITs:1]$

db aws_delete_instance

Usage

db aws_delete_instance [<instance_id>]

Delete the RDS instance with id <instance_id>. Enter without an argument to display a list of instances from which
to choose.

Example

Deleting an AWS database instance:

1.9. Command-line Interface 35

psiturk Documentation, Release 2.0

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_delete_instance
Here are the available instances you can delete:

mydb (available)
Enter the instance identity you would like to delete: mydb
Deleting an instance will erase all your data associated with the
database in that instance. Really quit? y or n: y
DBInstance:mydb
AWS RDS database instance mydb deleted. Run `db aws_list_instances` for current
→˓status.

1.9.6 debug command

Usage

debug [options]

debug makes it possible to locally test your experiment without contacting Mechanical Turk servers. Type debug
to automatically launch your experiment in a browser window. The server must be running to debug your experiment.
When debugging, the server feature that prevents participants from reloading the experiment is disabled, allowing you
to make changes to the experiment on the fly and reload the debugging window to see the results.

Options

-p, --print-only

Use the -p flag to print a URL to use for debugging the experiment, without attempting to automatically launch a
browser. This is particularly useful if your experiment server is running remotely.

Example

Using the -p flag to request a debug link:

[psiTurk server:on mode:sdbx #HITs:0]$ debug -p
Here's your randomized debug link, feel free to request another:
http://localhost:22362/ad?assignmentId=debugDKSAAE&hitId=debug2YW8RI&
→˓workerId=debugM1QUH4
[psiTurk server:on mode:sdbx #HITs:0]$

1.9.7 download_datafiles command

Usage

download_datafiles

The download_datafiles command accesses the current experiment database table (defined in config.txt) and
creates a copy of the experiment data in a csv format. download_datafiles creates three files in your current
folder:

36 Chapter 1. User’s Guide

server.html#server-on
../config/database_parameters.html

psiturk Documentation, Release 2.0

eventdata.csv

eventdata.csv contains events such as window-resizing, and is formatted as follows:

column 1 column 2 column 3 column 4 column 5
unique user ID event type interval value time

questiondata.csv

questiondata.csv contains data recorded with psiturk.recordUnstructuredData(), and is formatted as follows:

column 1 column 2 column 3
unique user ID question name response

trialdata.csv

trialdata.csv contains data recorded with psiturk.recordTrialData(), and is formatted as follows:

column 1 column 2 column 3 column 4
unique user ID trial # time trial data

Note: More information about how to record different types of data in an experiment can be found <here.

1.9.8 help command

Usage

help
help <command>

The help command displays a list of valid psiturk shell commands. Entering help followed by the name of a
command brings up information about that command.

Examples

1. List all commands:

[psiTurk server:on mode:sdbx #HITs:0]$ help

psiTurk command help: ===================== amt_balance debug mode server config down-
load_datafiles open setup_example version db hit psiturk_status status worker

basic CMD command help: ======================= EOF ed help li py run shortcuts _load edit hi list q
save show _relative_load eof history load quit set cmdenvironment exit l pause r shell

psiTurk commands are listed first, followed by commands inherited from the python cmd2 module. More information
about cmd2 commands can be found here.

1.9. Command-line Interface 37

../api.html#psiturk-recordunstructureddata-field-value
../api.html#psiturk-recordtrialdata-datalist
../recording.html
http://pythonhosted.org/cmd2/index.html

psiturk Documentation, Release 2.0

2. View the help menu for a command and its subcommands:

[psiTurk server:on mode:sdbx #HITs:0]$ help server

Usage: server on server off server restart server log server help

‘server’ is used with the following subcommands: on Start server. Will not work if server is already running.
off Stop server. May take several seconds. restart Run ‘server off’, followed by ‘server on’. log Open live
server log in a separate window. help Display this screen.

Note: With commands with subcommands such as server, you can also view the help screen by entering
<command> help. For example, server help has the same effect at help server.

1.9.9 hit command + subcommands

Contents

• hit command + subcommands

– Description

– hit create

* Usage

* Example

– hit extend

* Usage

* Example

– hit expire

* Usage

* Example

– hit dispose

* Usage

* Example

– hit list

* Usage

* Examples

Description

The hit command is used to create, view, delete, and modify Human Intelligence Tasks (“HITs”) on Amazon Me-
chanical Turk.

38 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

hit create

Usage

hit create [<numWorkers> <reward> < duration>]

Create a HIT with the specified number of assignments, reward amount, and duration. Will be posted either live to
AMT or to the Worker Sandbox depending upon your current mode. hit create can also be run interactively by
entering the command without parameters.

The duration specifies how long a worker can “hold on” to your HIT (in hours or hours.<fraction_of_hour>). This
should be long enough for workers to actually complete your HIT, but sometimes workers will “accept” a HIT which
is worth a lot of money but come back and do the work later in the day. You can specify a shorter duration if you want
workers to complete your HIT immediately.

Example

Creating a HIT in the sandbox with three assignments that pays $2.00 and has a 1.5 hour time limit:

[psiTurk server:on mode:sdbx #HITs:0]$ hit create 3 2.00 1.5

Creating sandbox HIT
HITid: 2XE40SPW1INMXUF9OJUNDB6BT8W2F4
Max workers: 3
Reward: $2.00
Duration: 1.5 hours
Fee: $0.60

Total: $6.60

Ad for this HIT now hosted at: https://ad.psiturk.org/view/Q3HWnfqzg3MP9VDbu3kFyn?
→˓assignmentId=debugJCI80S&hitId=debug9AWC90
[psiTurk server:on mode:sdbx #HITs:1]$

hit extend

Usage

hit extend <HITid> [--assignments <number>] [--expiration <time>]

Extend an existing HIT by increasing the amount of time before the HIT expires (and and is no longer available to
workers) or by increasing the number of workers who can complete the HIT.

Example

Adding both time and assignments to a HIT:

psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task

Status: Assignable
HITid: 2776AUC26DG6NRIGNVRFN0COYO0B4R
max:3/pending:0/complete:0/remain:3

(continues on next page)

1.9. Command-line Interface 39

psiturk Documentation, Release 2.0

(continued from previous page)

Created:2014-03-07T21:36:33Z
Expires:2014-03-08T21:36:33Z

[psiTurk server:on mode:sdbx #HITs:1]$ hit extend 2776AUC26DG6NRIGNVRFN0COYO0B4R --
→˓assignments 10 --expiration 12
HIT extended.
[psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task

Status: Assignable
HITid: 2776AUC26DG6NRIGNVRFN0COYO0B4R
max:13/pending:0/complete:0/remain:13
Created:2014-03-07T21:36:33Z
Expires:2014-03-08T21:48:33Z

Note that both the remaining number of assignments and the expiration time of the HIT have increased. One can also
increase the number of assignments or the expiration independently.

hit expire

Usage

hit expire (--all | <HITid> ...)

Expire one or more existing HITs, or expire all HITs using the --all flag.

Example

1. Expiring two HITs at once:

[psiTurk server:on mode:sdbx #HITs:4]$ hit expire 2Y0T3HVWAVKIMG42A2S75Z9943NNFG
→˓2RVZXR24SMEZFG314ME9X8P9CPPH0X
expiring sandbox HIT 2Y0T3HVWAVKIMG42A2S75Z9943NNFG
expiring sandbox HIT 2RVZXR24SMEZFG314ME9X8P9CPPH0X
[psiTurk server:on mode:sdbx #HITs:2]$

2. Expiring all active HITs:

[psiTurk server:on mode:sdbx #HITs:2]$ hit expire --all
expiring sandbox HIT 2776AUC26DG6NRIGNVRFN0COYO0B4R
expiring sandbox HIT 2VUWA6X3YOCCVET8PKOPWINIWJFPO0
[psiTurk server:on mode:sdbx #HITs:0]$

hit dispose

Usage

hit dispose (--all | <HITid>)

Dispose of one ore more HITs, or dispose of all HITs using the --all flag.

40 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

Note: To dispose of a HIT, it must not be active or have any unreviewed assignments

Example

[psiTurk server:off mode:sdbx #HITs:0]$ hit dispose 241KM05BMJTUXCDL0TG9UA7SJI3JEQ
deleting sandbox HIT 241KM05BMJTUXCDL0TG9UA7SJI3JEQ
[psiTurk server:off mode:sdbx #HITs:0]$

hit list

Usage

hit list [--active | --reviewable]

List all HITs, or list all active or reviewable HITs using the provided flags.

Examples

1. List all active HITs:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list --active
Stroop task

Status: Assignable
HITid: 2ZFKO2L92HECCONGNYFCFF0C3R2FG1
max:1/pending:0/complete:0/remain:1
Created:2014-03-07T22:10:01Z
Expires:2014-03-08T22:10:01Z

[psiTurk server:on mode:sdbx #HITs:1]$

2. List all HITs:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list
Face Discrimination (5 - 10 minutes, up to $1.0 bonus!!)

Status: Reviewable
HITid: 2ZRNZW6HEZ6OUI7FRTZ6CGUMGIQPZ0
max:1/pending:0/complete:0/remain:0
Created:2014-03-03T23:53:08Z
Expires:2014-03-04T23:53:08Z

Stroop task
Status: Assignable
HITid: 2ZFKO2L92HECCONGNYFCFF0C3R2FG1
max:1/pending:0/complete:0/remain:1
Created:2014-03-07T22:10:01Z
Expires:2014-03-08T22:10:01Z

[psiTurk server:on mode:sdbx #HITs:1]$

1.9. Command-line Interface 41

psiturk Documentation, Release 2.0

1.9.10 psiturk_status command

Usage

psiturk_status

Display startup screen with message from psiturk.org.

Example

[psiTurk server:off mode:sdbx #HITs:1]$ psiturk_status

http://psiturk.org
______ ______ __ ______ __ __ ______ __ __

/\ == \ /\ ___\ /\ \ /__ _\ /\ \/\ \ /\ == \ /\ \/ /
\ \ _-/ \ ___ \ \ \ \ \/_/\ \/ \ \ _\ \ \ \ __< \ \ _"-.
\ _\ \/_____\ \ _\ \ _\ \ _____\ \ _\ _\ \ _\ _\
\/_/ \/_____/ \/_/ \/_/ \/_____/ \/_/ /_/ \/_/\/_/

an open platform for science on Amazon Mechanical Turk

--
System status:
Hi all, You need to be running psiTurk version >= 1.0.5dev to use the
Ad Server feature!

Check https://github.com/NYUCCL/psiTurk or http://psiturk.org for
latest info.
psiTurk version 1.0.8dev
Type "help" for more information.
[psiTurk server:off mode:sdbx #HITs:1]$

1.9.11 quit command

Usage

quit

The quit command quits the psiTurk shell. If you have a server running, psiTurk will confirm that you want to quit
before exiting, since quitting psiTurk turns off the server.

Example

Quitting psiTurk with the server running:

[psiTurk server:on mode:sdbx #HITs:0]$ quit
Quitting shell will shut down experiment server. Really quit? y or n: y
Shutting down experiment server at pid 40182...
Please wait. This could take a few seconds.
$

42 Chapter 1. User’s Guide

http://psiturk.org

psiturk Documentation, Release 2.0

1.9.12 server command + subcommands

Contents

• server command + subcommands

– Description

– server on

* Example

– server off

* Example

– server restart

– server log

Description

The server command is used with a variety of subcommands to control the experiment server.

server on

Start the experiment server.

Example

[psiTurk server:off mode:sdbx #HITs:0]$ server on
Experiment server launching...
Now serving on http://localhost:22362
[psiTurk server:on mode:sdbx #HITs:0]$

server off

Shut down the experiment server.

Example

[psiTurk server:on mode:sdbx #HITs:0]$ server off
Shutting down experiment server at pid 32911...
Please wait. This could take a few seconds.
[psiTurk server:off mode:sdbx #HITs:0]$

server restart

Runs server off, followed by server on.

1.9. Command-line Interface 43

psiturk Documentation, Release 2.0

server log

Opens the server log in a separate window. Uses Console.app on Max OS X and xterm on other systems.

1.9.13 status command

Usage

status

The status command updates and displays the server status and number of HITs available on AMT or in the worker
sandbox.

Note: This information is also displayed in the psiTurk shell prompt, but #HITs is not updated after every command
(as every update requires contacting the AMT server). status provides a way to make sure the prompt is up-to-date.

Example

Using the status command in sandbox mode:

[psiTurk server:off mode:sdbx #HITs:1]$ status
Server: currently offline
AMT worker site - sandbox: 1 HITs available

1.9.14 mode command

Usage

mode
mode <which>

The mode command controls the current mode of the psiTurk shell. Type mode live or mode sandbox to switch
to either mode, or simply mode to switch to the opposite mode. The current mode affects almost every psiturk shell
command. For example, running hit create while in sandbox mode will create a HIT in the sandbox, while
running it in live mode will create a HIT on the live AMT site. Similarly, commands like worker list all or
hit list all will list assignments and HITs from either the live site or the sandbox, depending on your mode.

Note: Switching the psiturk shell mode while the server is running requires the server to restart, since at the end of
the experiment participants need to be correctly redirected back to either the live AMT site or the sandbox. Therefore,
you should not change modes while you are serving a live HIT to workers.

Examples

1. Switching mode, with and without <which> specifier:

44 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

[psiTurk server:off mode:sdbx #HITs:0]$ mode
Entered live mode
[psiTurk server:off mode:live #HITs:0]$ mode sandbox
Entered sandbox mode
[psiTurk server:off mode:sdbx #HITs:0]$

2. Switching mode with the server running:

[psiTurk server:on mode:sdbx #HITs:0]$ mode
Switching modes requires the server to restart. Really switch modes? y or n: y
Entered live mode
Shutting down experiment server at pid 33447...
Please wait. This could take a few seconds.
Experiment server launching...
Now serving on http://localhost:22362
[psiTurk server:on mode:live #HITs:0]$

Type n instead to abort the mode switch harmlessly.

1.9.15 worker command + subcommands

Contents

• worker command + subcommands

– Description

– worker approve

* Usage

* Example

– worker reject

* Usage

* Example

– worker unreject

* Usage

* Example

– worker bonus

* Usage

* Examples

– worker list

* Usage

* Examples

1.9. Command-line Interface 45

psiturk Documentation, Release 2.0

Description

The worker command is used to list, approve and reject, and bonus worker assignments on Amazon mechanical
Turk.

worker approve

Usage

worker approve (--hit <hit_id> | <assignment_id> ...)

Approve worker assignments for one or more assignment ID’s, or use the --hit flag to approve all workers for a
specific HIT.

Example

1. Approve a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker approve
→˓21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
approved 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

2. Approve all assignments for a given hit:

[psiTurk server:on mode:sdbx #HITs:0]$ worker approve --hit
→˓2QKHECWA6X3Y4QTYKCG5NXPTWYGMLF
approving workers for HIT 2QKHECWA6X3Y4QTYKCG5NXPTWYGMLF
approved 2MB011K274J7PY7FQ1ZN76UXH0ECED
approved 2UO4ZMAZHHRR1T7J8NEVUH1KJCAKBY

worker reject

Usage

worker reject (--hit <hit_id> | <assignment_id> ...)

Reject worker assignments for one or more assignment ID’s, or use the --hit flag to reject all workers for a specific
HIT.

Example

Reject a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker reject 2Y9OVR14IXKOIZQL1E3WD6X30CD98U
rejected 2Y9OVR14IXKOIZQL1E3WD6X30CD98U

46 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

worker unreject

Usage

worker unreject (--hit <hit_id> | <assignment_id> ...)

Unreject worker assignments for one or more assignment ID’s, or use the --hit flag to unreject all workers for a
specific HIT.

Note: Unrejecting an assignment automatically approves that assignment.

Example

Unreject a single assignment:

[psiTurk server:on mode:sdbx #HITs:0]$ worker unreject 2Y9OVR14IXKOIZQL1E3WD6X30CD98U
unrejected 2Y9OVR14IXKOIZQL1E3WD6X30CD98U

worker bonus

Usage

worker bonus (--amount <amount> | --auto) (--hit <hit_id> | <assignment_id> ...)

Grant bonuses to workers for one or more assignment ID’s, or use the --hit flag to bonus all workers for a specific
HIT.

Enter the bonus --amount <amount> in an X.XX format, or use the --auto flag to bonus each worker according
to the ‘bonus’ field of hte database (requires a custom bonus route in the experiment’s custom.py file).

Upon running worker bonus, you will be asked to input a reason for the bonus. This message will be displayed to
workers who receive the bonus.

Note: You must approve the worker assignment before you grant a bonus.

Warning: While it isn’t possible to approve an assignment more than once, it is possible to grant a bonus
repeatedly. When running worker bonus with the --hit flag, only workers who have not yet received a
bonus for the assignment will be bonused. However, when running worker bonus on individual assignments
the worker will be bonused regardless of whether they have already received one.

Examples

1. Bonusing an individual assignment. The bonus can be granted repeatedly, making this risky:

1.9. Command-line Interface 47

../customizing.html

psiturk Documentation, Release 2.0

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00
→˓21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
Type the reason for the bonus. Workers will see this message: Here's a bonus!
gave bonus of $2.00 to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00
→˓21A8IUB2YU98ZV9C5BUL3FBJB5B8K7
Type the reason for the bonus. Workers will see this message: Here's another one!
gave bonus of $2.00 to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

2. Say there are approved assignments for a HIT, one already bonused, one not yet bonused. Bonusing by HIT
prevents repeated bonuses:

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --amount 2.00 --hit
→˓2ECYT3DHJHP4RRU304P8USX9BCXU1O
Type the reason for the bonus. Workers will see this message: you haven't been
→˓bonused yet. Here's a bonus!
bonusing workers for HIT 2ECYT3DHJHP4RRU304P8USX9BCXU1O
gave a bonus of $2.00 to 2MB011K274J7PY7FQ1ZN76UXH0ECED
bonus already awarded to 21A8IUB2YU98ZV9C5BUL3FBJB5B8K7

3. If a compute-bonus route exists in the experiment custom.py, we can also use the --auto flag to automatically
give each worker the correct bonus:

[psiTurk server:on mode:sdbx #HITs:0]$ worker bonus --auto --hit
→˓2ECYT3DHJHP4RRU304P8USX9BCXU1O
Type the reason for the bonus. Workers will see this message: Thanks for moving
→˓science forward!
bonusing workers for HIT 2ZQIUB2YU98JX6A4V3C0IBJ9W0HL9P
gave a bonus of $3.00 to 27UQ45UUKQOYW1ZFLNJ8RG012VYDVP
gave a bonus of $2.50 to 24IIHPCGJ2D2H2KFPX80MPPSKQM933

Note: Unlike the commands to approve, reject, or unreject workers, the worker bonus command requires the
psiturk shell to be launched in the same project as the HIT for which workers are being bonused, since the information
about which workers have been bonused is stored in the experiment database.

worker list

Usage

worker list [--submitted | --approved | --rejected] [--hit <hit_id>]

List all worker assignments, or list worker assignments fitting a given condition using the provided flags. Use the
--hit flag to list workers for a specific HIT.

Examples

1. Listing all submitted workers:

[psiTurk server:on mode:sdbx #HITs:0]$ worker list --submitted
[

{

(continues on next page)

48 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

(continued from previous page)

"status": "Submitted",
"assignmentId": "2VQHVI44OS2K18PW7EQSEAP5DPV5ZY",
"workerId": "A2O6BB9HXEUXX1",
"submit_time": "2014-03-04T16:14:32Z",
"hitId": "2ZRNZW6HEZ6OUI7FRTZ6CGUMGIQPZ0",
"accept_time": "2014-03-04T16:14:05Z"

},
{

"status": "Submitted",
"assignmentId": "2XB92NJKM05B2XAD1YN2JTP9TYXAFG",
"workerId": "A2O6BB9HXEUXX1",
"submit_time": "2014-03-03T23:35:17Z",
"hitId": "2RWSCWY2AOO2W03X0OFGTSCMKZZ22I",
"accept_time": "2014-03-03T23:34:19Z"

}
]

2. Listing approved workers for a specific HIT:

[psiTurk server:on mode:sdbx #HITs:0]$ worker list --approved --hit
→˓2ECYT3DHJHP4RRU304P8USX9BCXU1O
listing workers for HIT 2ECYT3DHJHP4RRU304P8USX9BCXU1O
[

{
"status": "Approved",
"assignmentId": "21A8IUB2YU98ZV9C5BUL3FBJB5B8K7",
"workerId": "A2O6BB9HXEUXX1",
"submit_time": "2014-02-26T03:26:55Z",
"hitId": "2ECYT3DHJHP4RRU304P8USX9BCXU1O",
"accept_time": "2014-02-26T03:26:36Z"

}
]

1.10 Configuring Databases

Databases provide a critical aspect of psiTurk as they store data from experiments and help to prevent the same
user from completing your experiment more than once. Databases provide an important function for web-based
experiments. Because multiple people can complete your experiment at the same time, you need a system which can
simultaneously write/read data. Databases are optimized for this type of environment and are thus very useful for
experiments.

Databases can be configured via the command line or by editing the configuration files directly. See the db command
documentation for a full list of database commands available in the psiTurk shell. You can also view your current
database settings by typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config

in the command line shell.

See also:

Database parameters For details on how to configure databases in config.txt.

Local configuration file For details on the local configuration file config.txt.

1.10. Configuring Databases 49

command_line/db.html
command_line/db.html
config/database_parameters.html
configuration.html#local-configuration-file

psiturk Documentation, Release 2.0

1.10.1 Using SQLite

Perhaps the simplest solution is to use SQLite. This is a simple, easy to use database solution that is written to a local
file on the same computer as is running the psiTurk shell/server. By default psiTurk will use a local SQLite database.

To use a SQLite data base, simply set the database_url field in your local configuration file (config.txt):

database_url = sqlite:///FILENAME.db

where FILENAME is of your choosing. By default, psiTurk sets this like this:

database_url = sqlite:///participants.db

This will make a SQLite database file in the top-level folder of your project. If you change the database_url and
restart psiTurk a new database corresponding to the new filename will be created. If you set it to an existing file name,
psiTurk will attempt to connect to this database.

You can also change this setting using the command line:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_local_file FILENAME.db

and verify the changes using:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config

It is best to do this while the server is not running (note in this example the “server” status says “off”). If you change
this while the server is running you will need to type:

[psiTurk server:on mode:sdbx #HITs:0]$ server restart

While great for debugging, SQLite has a number of important downsides for deploying experiments. In particular
SQLite does not allow concurrent access to the database, so if the locks work properly, simultaneous access (say,
from multiple users submitting their data at the same time) could destabilize your database. In the worst scenario, the
database could become corrupted, resulting in data loss.

As a result, we recommend using a more robust database solution when actually running your experiment. Luckily,
psiTurk can help you set up such a database (usually for free).

However, SQLite is a good solution particularly for initial testing. It is also possible to try to “throttle” the rate of
signups on Mechanical Turk (by only posting one assignment slot at a time) so that database errors are less likely
using SQLite.

Note: SQLite database are fine for local testing but more robust databases like MySQL are recommended especially
if you plan to run many participants simultaneously.

1.10.2 Using a self-hosted MySQL database (recommended)

A more robust solution is to set up a MySQL database. psiTurk relies on SQLAlchemy for interfacing with database
which means it is easy to switch between MySQL, PostgreSQL, or SQLite. We recommend MySQL because we have
tested it, but other relational database engines may works as well.

To use an existing MySQL database:

database_url = mysql://USERNAME:PASSWORD@HOSTNAME:PORT/DATABASE

50 Chapter 1. User’s Guide

http://www.sqlite.org/
configuration.html#local-configuration-file
command_line_overview.html
http://www.mysql.com/
http://www.sqlalchemy.org/

psiturk Documentation, Release 2.0

where USERNAME and PASSWORD are your access credentials for the database, HOSTNAME is the DNS entry or
IP address for the database, PORT is the port number (standard is 3306) and DATABASE is the name of the database
on the server.

Use 127.0.0.1 as the HOSTNAME for a database running locally to the psiTurk server rather than ‘localhost’. Mysql
treats the HOSTNAME ‘localhost’ as a special case in Unix-based systems and will cause the psiTurk server to fail to
boot.

It is wise to test that you can connect to this url with a MySQL client prior to launching. Sequel Pro is a nice GUI
database client for MySQL for Mac OS X.

Here’s an example of setting up a minimal MySQL database for use with psiTurk:

$ mysql -uroot -p
mysql> CREATE USER 'your_username'@'localhost' IDENTIFIED BY 'your_password';
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE DATABASE your_database;
Query OK, 1 row affected (0.01 sec)

mysql> GRANT ALL PRIVILEGES ON your_database.* TO 'your_username'@'localhost';
Query OK, 0 rows affected (0.00 sec)

where your_username, your_password and your_database match the USERNAME, PASSWORD and DATABASE spec-
ified in config.txt’s database_url variable.

The table specified in config.txt, turkdemo by default

table_name = turkdemo

will be created automatically when running the psiturk shell. MySQL is (fairly) easy to install and free. However, a
variety of web hosting services offer managed MySQL databases. Some are even free. Your university may be able to
provide this as well. MySQL is a very ubiquitous piece of software.

1.10.3 Obtaining a low-cost (or free) MySQL database on Amazon’s Web Services
Cloud

While not terribly difficult, installing and mangaging a MySQL database can be an extra hassle. Interestingly, when
you sign up with Amazon Mechanical Turk as a requester, you also are signing up for Amazon’s Web Services a very
powerful cloud-based computing platform that is used by many large web companies. One of the services Amazon
provides is a fully hosted relational database server (RDS).

According to Amazon, “Amazon Relational Database Service (Amazon RDS) is a web service that makes it easy to
set up, operate, and scale a relational database in the cloud. It provides cost-efficient and resizable capacity while
managing time-consuming database administration tasks, freeing you up to focus on your applications and business.”

Danger: If you use Amazon’s RDS to host your MySQL database you may incur additional charges. At the
present time a small RDS instance is free if you have recently signed up for Amazon Web Services. However,
older account have to pay according to the current rates. This does NOT use the pre-paid mechanism that is
used on Amazon Mechanical Turk. Thus launching a database server on the cloud and leaving it running run up
monthly charges. You are responsible for launching and shutting down your own database instances if you use this
approach. PROCEED WITH CAUTION.

The psiTurk command line provides a way to create a small MySQL database on Amazon’s cloud using the RDS
service. The command for this are available under the db command. Type:

1.10. Configuring Databases 51

https://dev.mysql.com/doc/refman/5.0/en/connecting.html#idm140235558252992
http://www.sequelpro.com/
https://www.google.com/search?q=free+mysql+hosting
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/pricing/
command_line_overview.html

psiturk Documentation, Release 2.0

[psiTurk server:off mode:sdbx #HITs:0]$ db help

for a list of sub-commands. The commands that begin with aws_ directly interface with the Amazon cloud.

Note: Of course, you must have valid AWS credentials to use this system. See Getting setup with Amazon Mechanical
Turk and Global configuration file.

If you are using psiturk with an IAM user, and if you want to use AWS RDB services via psiturk, add the Amazon-
RDSFullAccess AWS policy or an equivalent custom policy to your IAM user. See AWS docs here.

1.10.4 AWS Regions

AWS divides their cloud into different “regions” based on the location of the data center. To see a list of available
regions type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_regions

This command will also show which region you are currently using. The region is also set in your ~/.psiturkconfig
Global configuration file. You can also get the current region by typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_get_region

To change your region simply type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_set_region [<region_name>]

where region_name is one of the options listed by db aws_list_regions.

Why is this important? If you start an instance in one region, then switch regions, it will not show up in your list
anymore. The regions are sort of independent from one another. Thus it is important to remember which region your
instance was started on (i.e., which data center).

Note: It is probably fine to just keep the region set to a single value perhaps geographically closer to your location.
This functionality is just provided in case the default region isn’t working for you.

1.10.5 Creating an RDS Instance

After you have decided on a region, it is fairly easy to create a database instance. Type:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances

to see all available instances associated with your account in the current region. If you haven’t created any instances
in this region yet you should get a message like:

There are no DB instances associated with your AWS account in region us-east-1

To create a new instance use the db aws_create_instance command:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_create_instance [<instance_id> <size>
→˓<username> <password> <dbname>]

52 Chapter 1. User’s Guide

amt_setup.html
amt_setup.html
configuration.html#global-configuration-file
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.AccessControl.IdentityBased.html#UsingWithRDS.IAM.AccessControl.ManagedPolicies
configuration.html#global-configuration-file

psiturk Documentation, Release 2.0

The optional arguments allow you to create the database in one command. If you prefer you can use an interactive
mode by just typing:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_create_instance

This will print the following message describing the various options you need to specify for your database instance:

Ok, here are the rules on creating instances:

instance id:
Each instance needs an identifier. This is the name
of the virtual machine created for you on AWS.
Rules are 1-63 alphanumeric characters, first must
be a letter, must be unique to this AWS account.

size:
The maximum size of you database in GB. Enter an
integer between 5-1024

master username:
The username you will use to connect. Rules are
1-16 alphanumeric characters, first must be a letter,
cannot be a reserved MySQL word/phrase

master password:
Rules are 8-41 alphanumeric characters

database name:
The name for the first database on this instance. Rules are
1-64 alphanumeric characters, cannot be a reserved MySQL word

Then you will be prompted to specify values for these fields. If you follow the rules correctly your command will
execute successfully:

enter an identifier for the instance (see rules above): mydb
size of db in GB (5-1024): 5
master username (see rules above): UsernameXXXXX
master password (see rules above): PasswordXXXXX
name for first database on this instance (see rules): myexp

Creating AWS RDS MySQL Instance
id: mydb
size: 5 GB
username: UsernameXXXXX
password: PasswordXXXXX
dbname: myexp
type: MySQL/db.t1.micro

Be sure to store this information in a safe place.
Please wait 5-10 minutes while your database is created in the cloud.
You can run 'db aws_list_instances' to verify it was created (status
will say 'available' when it is ready

The instructions mention that it can take a few minutes for you database to “spin up”. If you run db aws_list_instances
after a few minutes you should now see your database in the cloud:

1.10. Configuring Databases 53

psiturk Documentation, Release 2.0

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-
→˓1

Instance ID: mydb
Status: creating

Notice the status is “creating” (this means the database is not available yet). Just wait a bit longer. It really can take
10-15 minutes! Other possible status messages for an instance include backing-up (AWS automatically backs up your
database in case of data loss. At this time psiTurk does not help you access those backups, you’ll have to do that from
the AWS web console.)

When your database is ready the message from db aws_list_instances should look like:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-
→˓1

Instance ID: mydb
Status: available

If you have multiple instances they will also appear in this list.

Danger: Multiple instances increase the possible charges you’ll incur to Amazon since you are charged per-
instance.

Once your instance is created and “available” if you type db get_config you’ll notice that your experiment is still
configured to use whatever setting you had previously:

[psiTurk server:off mode:sdbx #HITs:0]$ db get_config
Current database setting (database_url):

sqlite:///participants.db

To actually use your instance you need to tell psiTurk which instance:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_aws_instance mydb
Switching your DB settings to use this instance. Are you sure you want to do this? y
enter the master password for this instance: PasswordXXXXX
AWS RDS database instance mydb selected.
Here are the available database tables

myexp
Enter the name of the database you want to use or a new name to create a new one:
→˓myexp
Successfully set your current database (database_url) to

mysql://UsernameXXXXX:PasswordXXXXX@mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.
→˓com:3306/myexp

And now your experiment will save data to this MySQL database in the Amazon cloud! Notice that Amazon has
assigned your computer a random looking hostname/ip (mydb.cdukgn44bkrv.us-east-1.rds.amazonaws.com). You can
connect using any standard MySQL client (e.g., Sequel Pro) which is running on the same computer as you psiTurk
process

Note: psiTurk automatically makes instances so that only the current computer’s ip address can access the database
for security reasons. To modify that you can use the Amazon Web Services control panel or simple delete and spin up

54 Chapter 1. User’s Guide

http://www.sequelpro.com/

psiturk Documentation, Release 2.0

a new database instance.

To switch back to a local SQLite file:

[psiTurk server:off mode:sdbx #HITs:0]$ db use_local_file FILENAME.db
Updated database setting (database_url):

sqlite:///FILENAME.db

It is important that you delete your instance when you are finished using it. Otherwise you will be charged (usually
fractions of a penny per hour). Assuming I wanted to delete my new mydb instance here is an example session:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-
→˓1

Instance ID: mydb
Status: available

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_delete_instance
Here are the available instances you can delete:

mydb (available)
Enter the instance identity you would like to delete: mydb
Deleting an instance will erase all your data associated with the database in that
→˓instance. Really quit? y or n: y
DBInstance:mydb
AWS RDS database instance mydb deleted. Run `db aws_list_instances` for current
→˓status.
[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
Here are the current DB instances associated with your AWS account in region us-east-
→˓1

Instance ID: mydb
Status: deleting

After waiting a bit verify that you instance actually has been deleted:

[psiTurk server:off mode:sdbx #HITs:0]$ db aws_list_instances
There are no DB instances associated with your AWS account in region us-east-1

Overall we think this is pretty cool and nicely leverages the fact that you already got a Amazon Web Services account
when you signed up to use Amazon Mechanical Turk! However, remember, this can incur hosting charges. We
have set things up so that this process creates very small, very simple RDS instances (which are the cheapest kind).
However, leaving an instance running – or multiple instances – for a really long time can incur service charges which
will be billed to your account by Amazon at the end of the month (you may not realize the charges until later).

The point is that using a free MySQL database hosted by your university or another provider may be better, but this
solution is available for researchers who can afford to pay the hosting fee and would like everything in one place.

1.10.6 Obtaining a free MySQL database via OpenShift

If you are hosting your experiment on OpenShift, if you add a MySQL cartridge to your gear, psiTurk will automati-
cally save data to that db instead of to whatever is specified in your database_url config. OpenShift gears, including
using MySQL cartridges, are free unless you change default configuration settings.

See also:

PsiTurk OpenShift documentation.

1.10. Configuring Databases 55

openshift.html

psiturk Documentation, Release 2.0

1.11 Step-by-step Tutorials

We have a number of helpful step-by-step tutorials that introduce key concepts in using psiTurk.

1.11.1 Getting up and running with the basic Stroop task

Perhaps the best way to learn about psiTurk is to go through the steps of configuring and running an experiment. This
tutorial will take you through the steps required to run the basic Stroop experiment that ships default with psiTurk.
This project can be a great starting place for developing your own experiment.

Warning: This guide assumes you already have the psiTurk command line tool installed on your computer. If
you haven’t you should begin there and come back when it is installed. Instruction here.

This guide also assumes you are using version 1.0.10dev or higher of the psiTurk command line tool. Type
psiturk --version in your command shell/terminal program to verify your version number.

Background

The Stroop effect is the finding that people show interference from reading while naming the font color of words. The
task is used to suggest that reading has become a highly “automatic” cognitive skill. You can read more about the
Stroop task here. This guide won’t comment much on the psychology of it, rather focusing on the technical aspect
of running such an experiment online that consists of a sequence of trials and which records response time and key
presses.

Initialize the demo code

The first step is to obtain the archive of code and resources specific to the Stroop demo. Additional experiments are
shared on the psiTurk experiment exchange. However, the Stroop demo comes bundled within the psiturk command
line tool.

First use the psiturk-setup-example command to place fresh copies of the files into a new folder:

$ psiturk-setup-example
Creating new folder `psiturk-example` in the current working directory
Copying /Users/gureckis/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-
→˓packages/PsiTurk-1.0.10dev-py2.7.egg/psiturk/example to ./psiturk-example
Creating default configuration file (config.txt)

afterward you should have a new folder in the current directory named “psiturk-example” with the following listing of
files:

$ cd psiturk-example
$ ls -la
total 16
drwxrwxr-x 6 gureckis staff 204 Mar 31 12:18 .
drwx------ 23 gureckis staff 782 Mar 31 12:18 ..
-rw-r--r-- 1 gureckis staff 796 Mar 31 11:55 config.txt
-rw-r--r-- 1 gureckis staff 3226 Mar 31 11:55 custom.py
drwxrwxr-x 9 gureckis staff 306 Mar 31 12:18 static
drwxrwxr-x 19 gureckis staff 646 Mar 31 12:18 templates

56 Chapter 1. User’s Guide

install.html
http://en.wikipedia.org/wiki/Stroop_effect
http://psiturk.org/ee

psiturk Documentation, Release 2.0

See also:

A full description of the individual files is provided here. A few of the files described on the full documentation will
not appear until the first time you start psiturk and launch the psiTurk server.

Configure your global psiTurk options

When you run psiturk-setup-example the first time, a global configuration file is created in your local directory
named ~/.psiturkconfig. In order to get access to all the psiTurk features you need to enter credentials for
accessing Amazon Web Services and psiturk.org. Both of these can be added to ~/.psiturkconfig.

To access Amazon Mechanical Turk and other Amazon Web Services features you needs to enter your AWS Creden-
tials (see these instructions for details). You can leave the aws_region at the default value.

To access psiTurk online features such as the Ad Server you need to create an account on psiturk.org. Please visit
http://psiturk.org/register to sign up or http://psiturk.org/login to obtain your crediations. On your psiTurk dashboard
click “API Keys” and enter them into your file.

See also:

Please read more about the global configuration file, getting set up with Amazon Web Services, and getting setup with
psiturk.org on their respective documentation pages.

Configure the option for the demo experiment

Another of the files generated by psiturk-setup-example is the config.txt file, which contains a variety
of experiment and server parameters. These values can be changed by altering the file in any text editor.

The default config.txt file is already mostly configured to help you test the Stoop demo. Three options you might
want to adjust to begin with are:

1. In the [Server Parameters] section ensure that the port listed is one that is available on your computer
(answer is usually yes unless you have particular firewall software running).

2. In the [Server Parameters] section ensure that the host is either localhost (if just testing/debugging
locally) or set to 0.0.0.0 (if planning to test live on the AMT site).

See also:

A full description of the local configuration file and the meaning of the various option is available here.

Launch the psiTurk shell

All user commands to psiTurk, such as creating a HIT, launching the experiment server, or approving workers, are
issued through the psiTurk command-line shell. To open the shell, run psiturk a valid experiment folder. You
should see something like this (though probably colorized on your display):

$ psiturk

http://psiturk.org
______ ______ __ ______ __ __ ______ __ __

/\ == \ /\ ___\ /\ \ /__ _\ /\ \/\ \ /\ == \ /\ \/ /
\ \ _-/ \ ___ \ \ \ \ \/_/\ \/ \ \ _\ \ \ \ __< \ \ _"-.
\ _\ \/_____\ \ _\ \ _\ \ _____\ \ _\ _\ \ _\ _\
\/_/ \/_____/ \/_/ \/_/ \/_____/ \/_/ /_/ \/_/\/_/

an open platform for science on Amazon Mechanical Turk

(continues on next page)

1.11. Step-by-step Tutorials 57

anatomy_of_project.html
configuration.html#global-configuration-file
http://psiturk.org/register
http://psiturk.org/login
configuration.html#global-configuration-file
amt_setup.html#creating-an-aws-account
psiturk_org_setup.html#obtaining-psiturk-org-api-credentials
psiturk_org_setup.html#obtaining-psiturk-org-api-credentials
configuration.html#local-configuration-file
command_line_overview.html

psiturk Documentation, Release 2.0

(continued from previous page)

--
System status:
Hi all, You need to be running psiTurk version >= 1.0.5dev to use the
Ad Server feature!

Check https://github.com/NYUCCL/psiTurk or http://psiturk.org for
latest info.
psiTurk version 1.0.10dev
Type "help" for more information.
[psiTurk server:off mode:sdbx #HITs:0]$

The psiTurk shell prompt displays several useful pieces of information: whether the experiment server is on, whether
you are in sandbox or live mode, and how many hits are online in your current mode (more on all of these below).
While in the psiTurk shell, all commands entered will be executed by psiTurk. To exit the shell, type quit.

See also:

More documention of the shell including documentation of each available command is available here.

Start/stop the experiment server

The psiTurk experiment server is a separate process that acts as a custom, local web server (similar to Apache). To
launch the server type server on in the command line interface:

[psiTurk server:off mode:sdbx #HITs:0]$ server on
Experiment server launching...
Now serving on http://localhost:
[psiTurk server:on mode:sdbx #HITs:0]$

Note that the command prompt has changed from showing server:off to server:on in this example (and also
changed form red to green on colorized terminals). You can start or stop the server at any time using the server on
and server off commands. Typically you want to have the server running when you are testing locally, testing
on the AMT “sandbox”, or running your actual experiment. If the server stops when running your actual experiment,
Internet users will no longer be able to participate in your experiment even if you still have HITs posted on AMT’s
website. Thus, you should think of the experiment server as meaning your experiment is current “live.”

Debug/test the experiment locally

Frequently you would like to test your experiment in your browser locally without involving Amazon’s servers at
all. To do so, ensure that the experiment server is running (the prompt should show server:on). Then enter the
command debug. A new browser tab will open with the first screen of the experiment. The URL string for this will
look something like this:

http://localhost:22362/ad?assignmentId=debug7FIXMF&hitId=debugI3XW1P&
→˓workerId=debugY3UNQY

The http://localhost:22362/ part is set in the configuration options under Server Parameters in the
fields “host” and “port”. The default value, http://localhost:22362/ is a special term that refers to your own
computer. As mentioned above, if you wanted to run this experiment publically you would want to change the host
option to 0.0.0.0.

The remaining part of the URL created random (i.e., fake) identifiers which stand-in for the values that Amazon
provides identifying the user, hit, etc. . . Since by default psiTurk does not allow individuals to take the same exper-

58 Chapter 1. User’s Guide

command_line_overview.html

psiturk Documentation, Release 2.0

iment more than once (it checks for you to see if the worker has already completed the task or read too far into the
instructions) these random values are helpful during debugging.

Important: When running in debug mode (i.e., when the assignmentId, hitId, and workerId variables are
prefixed with the word “debug”) everything proceeds as usual. However, the server will not block the same user from
restarting the experiment after finishing the instructions (as is true normally). This helps debugging since you don’t
have to keep inventing new fake workerId. However, good to keep in mind this difference.

The first page that you see in the experiment looks something like this:

This is the page the AMT worker would see when they first accept the hit. When you click the link, a full screen
window will open up which will run the experiment. You can test it now if you like just to get a sense of things. If
you want to stop midway through that is no problem. Just close that browser window. Running debug again will open
a new browser window and let you repeat the process.

Important: In the typical development cycle you would make changes to the javascript, CSS, or HTML files in your
project locally and use debug to see those changes and test them. This way the development environment is the same
as the one in which you will eventually deploy your experiment on Mechanical Turk.

Experiment Structure

The basic stroop demo lays out a pretty standard experiment sequence. It is perhaps most helpful to step through this
sequence yourself, but conceptually:

1.11. Step-by-step Tutorials 59

psiturk Documentation, Release 2.0

First the users view an “ad” for the study (that is what is displayed above).

Then they view a consent form and are asked to verify that they read and understood the consent.

Next they are given a sequence of instruction screens. The experiment logs how long they look at the each instruction
screen as well as if they shift back and forth using the next/previous buttons.

Then the main experiment begins which dynamically re-draws the browser window using Javascript. The psiturk.js
API records the data and synchronizes it with your server from time to time.

After the experiment finishes the user is given a simple questionaire about their experiences in the task. Finally control
is returned to Amazon (or if debugging a stand-in message is displayed).

While all this is going on the psiturk.js API records if the user is changing windows and prevent them from reloading
the browser mid-way into the task to start over.

Launch in AMT sandbox

Now that you’ve tested the experiment locally, you may want to see how it would appear on mturk before running it
live with paid workers. Amazon offers this ability through the worker sandbox – a simulated environment that allows
developers to test their HITs.

To create a hit in the worker sandbox, first check that the server is on and that you are in sandbox mode; the psiTurk
prompt should say on next to server and sdbx next to mode. If you are in live mode, enter the command mode to
switch to sandbox mode. If you are in live mode it will post your task to the live, paid AMT website instead of the
free demo site.

When you are in sandbox mode if you type amt_balance you will see you have a never ending account with
$10,000.00 of fake money to spend on sandbox HITs.

[psiTurk server:on mode:sdbx #HITs:0]$ amt_balance
$10,000.00

To create a hit, enter the command hit create, and then answer the prompts to set up the HIT. Your choices for
the prompt answers are arbitrary for now, since the HIT won’t be completed by real workers. If the host variable in
the config.txt file for this project is set to localhost (default) or 127.0.0.1 you will get an error reminding
you that you server is no accessible to the general Internet. Please change this option before trying to post your task
on AMT.

[psiTurk server:on mode:sdbx #HITs:0]$ hit create
number of participants? 5
reward per HIT? 1.00
duration of hit (in hours)? 1

Creating sandbox HIT
HITid: 3SA4EMRVJV2ALPN29ZGP6BDPNBS0P0
Max workers: 5
Reward: $1.00
Duration: 1 hours
Fee: $0.50

Total: $5.50

Ad for this HIT now hosted at: https://ad.psiturk.org/view/oyG8sMCn9ySLTTrumsYgHe?
→˓assignmentId=debugFOFTCL&hitId=debugTSXLIB

This example create a hit with 5 “slots” for participants (or 5 assignments). The reward is $1.00 and the participant
has 1 hour to complete the task after accepting the HIT before it will be returned. Finally the unique “ad” for this
experiment/HIT is displayed at the bottom. Notice that the ad is hosted on https://ad.psiturk.org which
means it will always be visible to virtually all participants (see more info about the Secure Ad Server).

60 Chapter 1. User’s Guide

api.html
api.html
api.html
sercure_ad_server.html

psiturk Documentation, Release 2.0

You can also run create_hit non-interactively by providing arguments when you run the command, for example
create_hit 10 1.00 4.

You should now see the number “1” next to “#HITs:” in the psiTurk prompt, denoting that you have one active HIT
in the worker sandbox. If you type the command hit list active, you should see a description of your HIT
including the HIT id:

[psiTurk server:on mode:sdbx #HITs:1]$ hit list active
Stroop task

Status: Assignable
HITid: 3SA4EMRVJV2ALPN29ZGP6BDPNBS0P0
max:5/pending:0/complete:0/remain:5
Created:2014-03-31T21:32:27Z
Expires:2014-04-01T21:32:27Z

To test your HIT, go to the worker sandbox and search for your HIT by entering the name of your requester account in
the search bar. You should see something like this:

Click “view a HIT in this group” to open a hit. You should see an ad for your HIT appear on the screen. Click “accept
HIT”, then click the link in the HIT ad to open the experiment in a full-screen window. If you complete the HIT in
this manner you it should go through all the steps of the AMT process. Afterwards you will have some data in your
database.

Accessing your data

The simplest way to retrieve data is using the download_datafiles command. This creates three csv files containing the
three kinds of data: trial data, question data, and event data.

If you are using the default SQLLite database (see configuring databases) then another option is to use a GUI tool like
Base to access the data in the participants.db file in your project folder.

If you set your database to use MySQL then you maybe able to connect and export the data using Sequel Pro.

Automatically computing a bonus

1.11. Step-by-step Tutorials 61

configure_databases.html
./command_line/download_datafiles.html
./recording.html#recording-trial-data
./recording.html#recording-unstructured-data
./recording.html#browser-event-data
configure_databases.html
http://menial.co.uk/base/
http://www.sequelpro.com/

psiturk Documentation, Release 2.0

Approve/Reject Workers

Assigning bonuses

Launch “live” experiment

To launch an experiment “live” you follow the same steps as launching in the sandbox but first set the “mode” of the
command line to “live”:

[psiTurk server:on mode:sdbx #HITs:1]$ mode
Switching modes requires the server to restart. Really switch modes? y or n: y
Entered live mode
Shutting down experiment server at pid 55158...
Please wait. This could take a few seconds.
Experiment server launching...
Now serving on http://0.0.0.0:22362
[psiTurk server:on mode:live #HITs:0]$

Now if you run hit create it will post a hit on the live website. You must have enough money in your AMT
account to pay for the HITs you are requesting, otherwise an error message will be displayed. The amt_balance
command will let you check your current balance:

[psiTurk server:on mode:live #HITs:0]$ amt_balance
$178.70

Danger: Remember to switch back to “sandbox” mode when you are finished collecting data so that the command
you type will not accidently create tasks that will charge you account money!

Further learning. . .

This concludes the conceptual overview of the Stroop example that ships with psiTurk. Continue reading the decom-
posing the Stroop task <decompose_stroop.html> section to learn more about the gritty details. This concludes the
conceptual

1.11.2 Decomposing the Stroop task

1.12 Anatomy of a basic psiTurk project

Every psiTurk compatible project should include a few basic files. As an example here is the file listing of the Stroop
example which is included in a default psiTurk installation.

These files might all seem mysterious at first, but this section of the documentation explains their purpose. Of course,
projects can include additional files as needed but these are basics that most projects will want to include.

1.12.1 config.txt

This is the basic configuration file for the project.

See also:

Local configuration files For details on the structure of these files.

62 Chapter 1. User’s Guide

stroop.html
stroop.html
../configuration.html#local-configuration-file

psiturk Documentation, Release 2.0

1.12.2 custom.py

This file is optional. Most projects may not need this file at all. However, if you would like to extend the functionality
of psiTurk in various ways, this file may be for you. In particular, this allows you to define custom “routes” or
“urls” in your project. One example where this might be used is for creating routes that compute a participant’s bonus
automatically.

See also:

Customizing psiTurk For details on the structure of these files.

1.12.3 participants.db

By default, psiTurk will create a local SQLLite database for storing data. You can also use a different database file or
a MySQL database.

See also:

Configuring Databases For a complete guides to databases with psiTurk.

1.12.4 server.log

The psiTurk web server process will not print to the Terminal. Instead, error messages and warning will be printed to
the server log file. This will be created the first time you run the server.

See also:

Interacting with server log The command for viewing the log file.

Logfile configuration options Configuration options controlling the log file.

1.12.5 The static/ directory

The static folder holds files which are not dynamically altered by the psiTurk server (i.e., templated). This includes
images, javascript libraries, CSS style sheets etc. . . You can add additional files and folders for static files if you need
in your project.

It includes one top-level file (favicon.ico) which is the little icon that appears next to the URL in the browser window.
You might want to customize this with the favicon.ico file used by your university or company.

In addition, there are typically four sub-directories:

The static/images/ directory

This folder should include all the image files (e.g., stimuli) used in your experiment. By default includes a
university.png file which should be replaces with your university or company logo so that participants know
the identity of your organization.

The static/css/ directory

This directory should hold all the CSS files you would like to use in your experiment (by default includes files shipped
with Bootstrap and a style.css file which overrides some of those styles for particular parts of the instructions, ad,
etc. . .).

1.12. Anatomy of a basic psiTurk project 63

../customizing.html
../configure_databases.html
../command_line/server.html#server-log
../config/server_parameters.html#logfile-string
http://getbootstrap.com

psiturk Documentation, Release 2.0

The static/js/ directory

This folder should contain all your custom Javascript code for your project. In the Stroop example, this includes
‘task.js’ which includes the logic for the experiment and ‘util.js’ which includes some supporting/mathematical func-
tions. You can add additional files as needed for your project.

The static/lib/ directory

This folder should contain all the external Javascript libraries that are needed by your project. It is a good idea to
actually include copies of those libraries here instead of linking to a CDN or other URL. This was, far into the future,
someone can re-run your experiment without have to hunt down an older version of the libraries you used. By default,
the Stroop example includes libraries for Backbone, JQuery, d3.js, and underscore.js. These four are required for
psiTurk to work properly but you can add other lirbaries for customization purposes.

The static/fonts/ directory

This directory should hold all the custom fonts for you project (by default includes fonts shipped with Bootstrap.)

1.12.6 The templates/ directory

The template folder holds the HTML templates for different parts of your experiment. You can add additional tem-
plates if needed for your project but this describes the basic set.

You can learn more about templates on the Jinja2 website.

The two most important files are ad.html and exp.html so be sure to review the documentation for those.

ad.html

This is a very important file. It contains the text of your HTML ad. This is the first thing participants taking your
experiment will see. This file exists locally. When you are debugging in local mode, the local file will be used. When
you create an ad on the Ad Server, a copy of this file is uploaded to the psiTurk cloud server.

See also:

psiturk.org Secure Ad Server You ad.html file is uploaded and stored on the Secure Ad Server when you create a
hit.

Command line tool for creating HITs Info on how to create a HIT using the command line.

The structure of this file is very particular. There are two ways your ad will be viewed. First, when a potential
participants is simply browsing the website, the will see one version of the ad. When the “Accept” the ad, the will see
a second version that may include addition information (such as providing the link to launch your actual experiment).

These two types of adds are contained in the same file. Which one is displayed is set by the Jinja template
<http://jinja.pocoo.org/docs/> The basic structure is:

{% if assignmentid == "ASSIGNMENT_ID_NOT_AVAILABLE" %}

HTML/CSS FOR AD BEFORE ACCEPTING

{% else %}

HTML/CSS FOR AD AFTER ACCEPTING

(continues on next page)

64 Chapter 1. User’s Guide

http://backbonejs.org/
http://jquery.com/
http://d3js.org/
http://underscorejs.org/
http://getbootstrap.com
http://jinja.pocoo.org/docs/
../command_line/debug.html
../secure_ad_server.html
../secure_ad_server.html
../command_line/hit.html

psiturk Documentation, Release 2.0

(continued from previous page)

{% endif %}

Important: You cannot directly reference addition CSS or JS files in the ad since the ad server will host the ad using
https://. As a result you need to include all CSS styles you want applied to your ad directly in the file. boostrap.min.css
is provided for free by the ad server.

For example, here is an example template that comes with the default stroop example.

<!doctype html>
<!--

The ad.html has a very specific format.

Really there are two "ads" contained within this file.

The first ad displays to participants who are browsing
the Amazon Mechanical Turk site but have not yet accepted
your hit.

The second part of the ad display after the person selected
"Accept HIT" on the Amazon website. This will reload the
ad and will display a button which, when clicked, will pop
open a new browser window pointed at your local psiTurk
server (assuming it is running and accessible to the Internet).

See comments throughout for hints

-->
<html>

<head>
<title>Psychology Experiment</title>
<link rel=stylesheet href="/static/css/bootstrap.min.css" type="text/

→˓css">
<style>

/* these tyles need to be defined locally */
body {

padding:0px;
margin: 0px;
background-color: white;
color: black;
font-weight: 300;
font-size: 13pt;

}

/* ad.html - the ad that people view first */
#adlogo {

float: right;
width: 140px;
padding: 2px;
border: 1px solid #ccc;

}

#container-ad {
position: absolute;
top: 0px; /* Header Height */

(continues on next page)

1.12. Anatomy of a basic psiTurk project 65

https://
../stroop.html

psiturk Documentation, Release 2.0

(continued from previous page)

bottom: 0px; /* Footer Height */
left: 0px;
right: 0px;
padding: 100px;
padding-top: 5%;
border: 18px solid #f3f3f3;
background: white;

}
</style>

</head>
<body>

<div id="container-ad">

<div id="ad">
<div class="row">

<div class="col-xs-2">
<!-- REPLACE THE LOGO HERE WITH YOUR

→˓UNIVERSITY, LAB, or COMPANY -->
<img id="adlogo" src="{{ server_

→˓location }}/static/images/university.png" alt="Lab Logo" />
</div>
<div class="col-xs-10">

<!--
If assignmentid is

→˓"ASSIGNMENT_ID_NOT_AVAILABLE"
it means the

→˓participant has NOT accepted your hit.
This should display

→˓the typical advertisement about
your experiment: who

→˓can participate, what the
payment is, the time,

→˓etc...

-->
{% if assignmentid ==

→˓"ASSIGNMENT_ID_NOT_AVAILABLE" %}

<h1>Call for participants
→˓</h1>

<p>
The XXX Lab

→˓at XXXXX University is looking for online participants
for a brief

→˓psychology experiment. The only requirements
are that you

→˓are at least 18 years old and are a fluent English
speaker. The

→˓task will that XXXXX minutes and will pay XXXXX.
</p>
<div class="alert alert-

→˓danger">
This

→˓task can only be completed once.
If you have

→˓already completed this task before the system will not
(continues on next page)

66 Chapter 1. User’s Guide

psiturk Documentation, Release 2.0

(continued from previous page)

allow you to
→˓run again. If this looks familiar please return the

HIT so
→˓someone else can participate.

</div>
<p>

Otherwise, please
→˓click the "Accept HIT" button on the Amazon site

above to begin
→˓the task.

</p>

{% else %}

<!--
OTHERWISE
If

→˓assignmentid is NOT "ASSIGNMENT_ID_NOT_AVAILABLE"
it means the

→˓participant has accepted your hit.
You should

→˓thus show them instructions to begin the
experiment ...

→˓ usually a button to launch a new browser
window

→˓pointed at your server.

It is
→˓important you do not change the code for the

openwindow()
→˓function below if you want you experiment

to work.
-->

<h1>Thank you for
→˓accepting this HIT!</h1>

<p>
By clicking the

→˓following URL link, you will be taken to the experiment,
including complete

→˓instructions and an informed consent agreement.
</p>
<script>

function
→˓openwindow() {

popup =
→˓window.open('{{ server_location }}/consent?hitId={{ hitid }}&assignmentId={{
→˓assignmentid }}&workerId={{ workerid }}','Popup','toolbar=no,location=no,status=no,
→˓menubar=no,scrollbars=yes,resizable=no,width='+1024+',height='+768+'');

popup.
→˓onunload = function() { location.reload(true) }

}
</script>
<div class="alert alert-

→˓warning">
Warning:

→˓Please disable pop-up blockers before continuing.
(continues on next page)

1.12. Anatomy of a basic psiTurk project 67

psiturk Documentation, Release 2.0

(continued from previous page)

</div>

<button type="button" class=
→˓"btn btn-primary btn-lg" onClick="openwindow();">

Begin Experiment
</button>

{% endif %}
<!--

endif
-->

</div>
</div>

</div>
</body>

</html>

complete.html

This is a small HTML file that “completes” the HIT. When debugging locally this file does nothing other than display
a message.

A different but similar version of this file is provided on the Secure Ad Server to register when tasks are completed.

consent.html

This is the informed consent form for your study. Place the text approved by your IRB here.

custom.html

A placeholder example of adding custom URLs/routes to your psiTurk application.

See also:

Customizing psiTurk For details on the structure of these files.

debriefing.html

This is the debriefing form for you study. It is optional, and up to you to display this HTML using your custom
Javascript code.

default.html

A placeholder file that is shown when someone accesses the top-level route (i.e., http://myserver.edu:PORT/). It just
redirects people to the ad.

68 Chapter 1. User’s Guide

../secure_ad_server.html
../customizing.html
http://myserver.edu:PORT/
ad_html.html

psiturk Documentation, Release 2.0

error.html

A HTML file that handles various errors that can occur during your experiment. Most errors will result in this template
being shown. You can customize what you want to show participants in the event of an error here.

A full description of error codes is available here.

exp.html

This is the main “experiment”. It is where the experiment “begins” for the subject.

Important this file MUST include the following code snippet

<script src="static/lib/jquery-min.js" type="text/javascript"> </script>
<script src="static/lib/underscore-min.js" type="text/javascript"> </script>
<script src="static/lib/backbone-min.js" type="text/javascript"> </script>
<script src="static/lib/d3.v3.min.js" type="text/javascript"> </script>

<script type="text/javascript">
// Subject info, including condition and counterbalance codes.
var uniqueId = "{{ uniqueId }}";
var condition = "{{ condition }}";
var counterbalance = "{{ counterbalance }}";
var adServerLoc = "{{ adServerLoc }}"
</script>

<script src="static/js/psiturk.js" type="text/javascript"> </script>

In the header of the file. This sets up the necessary variables for communication with the psiTurk experiment server.

The last function that should be called in this file is psiturk.completeHIT() which will finalize the task.

Here is a default example experiment:

<!doctype html>
<!--

The exp.html is the main form that
controls the experiment.

see comments throughout for advice
-->
<html>

<head>
<title>Psychology Experiment</title>
<meta charset="utf-8">
<link rel="Favicon" href="static/favicon.ico" />

<!-- libraries used in your experiment
psiturk specifically depends on underscore.js, backbone.js

→˓and jquery
-->

<script src="static/lib/jquery-min.js" type="text/javascript"> </
→˓script>

<script src="static/lib/underscore-min.js" type="text/javascript"> </
→˓script>

<script src="static/lib/backbone-min.js" type="text/javascript"> </
→˓script>

<script src="static/lib/d3.v3.min.js" type="text/javascript"> </
→˓script> (continues on next page)

1.12. Anatomy of a basic psiTurk project 69

../error.html
../api.html#psiturk-completehit

psiturk Documentation, Release 2.0

(continued from previous page)

<script type="text/javascript">
// These fields provided by the psiTurk Server
var uniqueId = "{{ uniqueId }}"; // a unique string

→˓identifying the worker/task
var condition = "{{ condition }}"; // the condition number
var counterbalance = "{{ counterbalance }}"; // a number

→˓indexing counterbalancing conditions
var adServerLoc = "{{ adServerLoc }}"; // the location of

→˓your ad (so you can send user back at end of experiment)
</script>

<!-- utils.js and psiturk.js provide the basic psiturk functionality -
→˓->

<script src="static/js/utils.js" type="text/javascript"> </script>
<script src="static/js/psiturk.js" type="text/javascript"> </script>

<!-- task.js is where you experiment code actually lives
for most purposes this is where you want to focus debugging,

→˓development, etc...
-->
<script src="static/js/task.js" type="text/javascript"> </script>

<link rel=stylesheet href="static/css/bootstrap.min.css" type="text/css">
<link rel=stylesheet href="static/css/style.css" type="text/css">

</head>
<body>

<noscript>
<h1>Warning: Javascript seems to be disabled</h1>
<p>This website requires that Javascript be enabled on your

→˓browser.</p>
<p>Instructions for enabling Javascript in your browser can

→˓be found
<a href="http://support.google.com/bin/answer.py?hl=en&

→˓answer=23852">here<p>
</noscript>

</body>
</html>

The instructions/ folder

This is is a folder of instruction screen you can configure for your experiment. You can add or remove files here. The
psiturk.js API has functionality for a basic instructions system but you are welcome to write you own in Javascript.

list.html

A placeholder example of adding custom URLs/routes to your psiTurk application.

See also:

Customizing psiTurk For details on the structure of these files.

70 Chapter 1. User’s Guide

../api.html
../customizing.html

psiturk Documentation, Release 2.0

postquestionnaire.html

This is an example questionnaire you can give participants at the end of the task. The code for processing the form is
contained in the psiturk.js API.

stage.html

This is a part of the default stroop example which is used to display the stimuli. It defines some default CSS <div>
elements which can be styled and used to show stimuli or instructions within a task.

1.13 Recording data

To record data in your task you make calls to the psiturk.js Javascript API. There are three kinds of data that psiTurk
will help you produce:

1. Trial-by-trial log file

2. Unstructured (field, value) pairs

3. Browser events

1.13.1 Recording trial data

The first dataset that will be produced by your experiment will be a simple log file, which you add to a single line at a
time. In order to add a line of data to the log, use psiturk.recordTrialData:

psiturk.recordTrialData(['this', 'is', 1, 'line'])

The list of values that you supply to recordTrialData will then be appended to the log. It is up to you how to
structure those lists; you will have to parse them as part of your analysis.

1.13.2 Recording unstructured data

In addition to trial by trial data, there is often a need to record information about a participant in the form of (field,
value) pairs, for which you can use psiturk.recordUnstructuredData:

psiturk.recordUnstructuredData('age', 24)
psiturk.recordUnstructuredData('response', 'yes')

Like the trial-by-trial data, it is up to you to decide whether or not to use this function. For some kinds of experiments
(like simple surveys), this might be the only function you need.

1.13.3 Saving the data

It’s important to remember that psiturk.recordTrialData and psiturk.recordUnstructuredData
only modify the psiturk object on the client side. If you want to save the data that has been accumulated to the
server, you must call psiturk.saveData().

It’s up to you how often psiturk.saveData() syncs the task data to the server (e.g., after every block, or once at
the end of the experiment). Using saveData frequently will limit the loss of data if the participant runs into an error,
but keep in mind that it involves a new request to the server each time it is called.

1.13. Recording data 71

../api.html
api.html
recording.html#recording-trial-data
recording.html#recording-unstructured-data
recording.html#browser-event-data

psiturk Documentation, Release 2.0

1.13.4 Browser event data

The third dataset is generated automatically without any input from the experiment, and is used to track special kinds
of events that occur as a worker is interacting with the page. Currently, this includes:

1. “resize” events: when the worker changes the size of their browser window (the first value recorded is the initial
size of the window)

2. “focus” events: when the worker switches to and from a different browser window or application. If the worker
leaves the experiment window, a “focus off” event is recorded; when they return a “focus on” event is recorded.

Note: Information about how to retrieve recorded data sets can be found here.

1.14 Retrieving Datasets

There are several ways to retrieve experiment data from the database:

1.14.1 Retrieving using download_datafiles

The simplest way to retrieve data is using the download_datafiles command. This creates three csv files containing the
three kinds of data: trial data, question data, and event data.

1.14.2 Retrieving programmatically

While the download_datafiles shell command is the simplest way to retrieve experiment data, a more powerful
and flexible solution is to retrieve the data programmatically. Many languages offer libraries for interfacing with
mysql and sqlite databases - below is an example using python and the sqlalchemy package to retrieve data from a
mysql database. We add +pymysql to the db_url to let sqlalchemy make use of pymysql package. (You can leave the
database_url in config.txt as mysql:// though – psiturk adds +pymysql internally). By including code such as this at
the beginning of your analysis script, you can be sure the the data you’re analyzing is always complete and up-to-date.

from sqlalchemy import create_engine, MetaData, Table
import json
import pandas as pd

db_url = "mysql+pymysql://username:password@host.org/database_name"
table_name = 'my_experiment_table'
data_column_name = 'datastring'
boilerplace sqlalchemy setup
engine = create_engine(db_url)
metadata = MetaData()
metadata.bind = engine
table = Table(table_name, metadata, autoload=True)
make a query and loop through
s = table.select()
rows = s.execute()

data = []
#status codes of subjects who completed experiment
statuses = [3,4,5,7]
if you have workers you wish to exclude, add them here

(continues on next page)

72 Chapter 1. User’s Guide

./retrieving.html
./command_line/download_datafiles.html
./recording.html#recording-trial-data
./recording.html#recording-unstructured-data
./recording.html#browser-event-data

psiturk Documentation, Release 2.0

(continued from previous page)

exclude = []
for row in rows:

only use subjects who completed experiment and aren't excluded
if row['status'] in statuses and row['uniqueid'] not in exclude:

data.append(row[data_column_name])

Now we have all participant datastrings in a list.
Let's make it a bit easier to work with:

parse each participant's datastring as json object
and take the 'data' sub-object
data = [json.loads(part)['data'] for part in data]

insert uniqueid field into trialdata in case it wasn't added
in experiment:
for part in data:

for record in part:
record['trialdata']['uniqueid'] = record['uniqueid']

flatten nested list so we just have a list of the trialdata recorded
each time psiturk.recordTrialData(trialdata) was called.
data = [record['trialdata'] for part in data for record in part]

Put all subjects' trial data into a dataframe object from the
'pandas' python library: one option among many for analysis
data_frame = pd.DataFrame(data)

1.14.3 How the datastring is structured

The main data from an experiment participant is held in a string of text in the datastring field of the data table.
Understanding how this string is structured is important to be able to parse the string into a useful format for your
analyses.

The datastring is structured as a json object. In the description that follows, sub-objects are indicated by names
wrapped in angle brackets (< >).

Top Level

The top level of the datastring contains summary information about the worker, as well as the datastring sub-objects:

{"condition": condition,
"counterbalance": counterbalance,
"assignmentId": assignmentId,
"workerId": workerId,
"hitId": hitId,
"currenttrial": trial_number_when_data_was_saved,
"useragent": useragent,
"data": <data>,
"questiondata": <questiondata>,
"eventdata": <eventdata>,
"mode": <mode>}

1.14. Retrieving Datasets 73

http://w3schools.com/json/

psiturk Documentation, Release 2.0

data

The data sub-object contains a list of the data recorded each time psiturk.recordTrialData() is called in the experiment:

[{"uniqueid": uniqueid,
"current_trial": current_trial_based_on_#_of_calls_to_recordTrialData,
"dataTime": current_time_in_system_time,
"trialdata": <datalist>},
...
]

Here, <datalist> is whatever is passed to psiturk.recordTrialData() in the experiment. This could be
in any format, such as a string or list, but we recommend saving data in a json format so that all data is stored in a
clear, easy-to-parse “field-value” format.

questiondata

The questiondata sub-object contains all items recorded using psiturk.recordUnstructuredlData().

{"field1": value1,
"field2": value2,
...

}

eventdata

The eventdata sub-object contains a list of events (such as window resizing) that occurred during the experiments:

[{"eventtype": eventtype,
"value": value,
"timestamp": current_time_in_system_time,
"interval": interval},
...

]

1.15 Customizing psiTurk

Describe custom.py file and more advanced techniques like automatically computing bonuses

1.16 Using external survey tools with psiTurk

With the magic of iframes and javascript window messaging, you can integrate external survey tools into your
psiTurk experiment. This is possible as long as the survey tool allows custom javascript to be triggered.

Window messaging allows cross-domain messaging via javascript, without having to configure security settings on the
server. MDN says it best:

“The window.postMessagemethod safely enables cross-origin communication. Normally, scripts on
different pages are allowed to access each other if and only if the pages that executed them are at locations
with the same protocol (usually both https), port number (443 being the default for https), and host
(modulo document.domain being set by both pages to the same value). window.postMessage

74 Chapter 1. User’s Guide

./api.html#psiturk-recordtrialdata-datalist
./api.html#psiturk-recordunstructureddata-field-value
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

psiturk Documentation, Release 2.0

provides a controlled mechanism to circumvent this restriction in a way which is secure when properly
used.”

Three special steps to hook up your survey to psiTurk:

1. Embed your survey as an iframe within one of your psiTurk pages or views.

2. Add a message event listener to your psiTurk window

3. Post a message from the survey tool to the window.top when the survey is complete. window.top will
be your psiTurk window. Do whatever you want via javascript once you receive the expected message.

To tie the psiTurk data and the external survey data together, embed a unique id into the iframe url you load, and then
record that unique url into your survey data. Don’t forget to do this. If you forget, you won’t know to who to connect
your survey data. If you want to tie things both ways, post back your survey session id as part of the survey-complete
post-back.

1.16.1 An example with Qualtrics

As of the time this documentation page was written, Qualtrics has an undocumented “feature”. Qualtrics automatically
posts a window message to window.top when the Qualtrics “end of the survey event” is triggered. For Qualtrics
surveys embedded as iframes in psiTurk experiments, we can take advantage of this behavior. The Qualtrics-
posted message contains your survey_id and the participant’s Qualtrics-created unique session_id. You should
already know the survey_id (because you just embedded a link containing this id), but the session_id is Qual-
tric’s unique id for whoever just finished your survey. You can record that with psiTurk as unstructured data (see
Recording unstructured data) if you desire.

Don’t forget to explicitly log the psiTurk unique id as embedded data within Qualtrics. See here for more about
embedding data into Qualtrics surveys.

The posted message when they finish a qualtrics survey is a string that looks like this:

QualtricsEOS|<survey_id>|<qualtrics_session_id>

So you can do something like this on your psiTurk page:

// load your iframe with a url specific to your participant
$('#iframe').attr('src','<your qualtrics url>&UID=' + uniqueId);

// add the all-important message event listener
window.addEventListener('message', function(event){

// normally there would be a security check here on event.origin (see the MDN
→˓link above), but meh.

if (event.data) {
if (typeof event.data === 'string') {

q_message_array = event.data.split('|');
if (q_message_array[0] == 'QualtricsEOS') {

psiTurk.recordTrialData({'phase':'postquestionnaire', 'status':'back_
→˓from_qualtrics'});

psiTurk.recordUnstructuredData('qualtrics_session_id', q_message_
→˓array[2]);

}
}

}
// display the 'continue' button, which takes them to the next page
$('#next').show();

})

1.16. Using external survey tools with psiTurk 75

https://www.qualtrics.com/university/researchsuite/advanced-building/survey-flow/embedded-data/

psiturk Documentation, Release 2.0

This code can be put on a page that has a link with id #next default-hidden via css which advances the participant
to the next experimental page. Note that this code checks that the event is QualtricsEOS before continuing on.
That’s because Qualtrics posts other events to window.top, too. This code is only interested in the EndOfSurvey
event.

Also notice that this code doesn’t implement any security precautions. Normally it’s good practice to check to see
where a message is coming from before you act on it. For instance, it might check to verify that the message is coming
from a qualtrics.com domain. But in this code, the worst-case scenario is that a tech-savvy participant somehow
triggers that they completed the survey before they actually did. In that case, their survey data would be blank, and
after visual inspection their assignment could be rejected.

1.16.2 What about not-Qualtrics?

If your survey tool isn’t posting messages to window.top for you, just window.top.
postMessage(<message>, <targetOrigin>) yourself. For instance, you might have javascript in
your survey tool that does:

window.top.postMessage("all_done|<survey_session_id>","*")

Then just listen for that event back on your psiTurk page, as in the Qualtrics example above.

1.17 Running psiTurk on Heroku

Heroku is a cloud service that lets you run applications in the cloud. You can run psiTurk on Heroku by preparing a
git repository and then pushing it to Heroku which will deploy and autorun the code for you.

The benefits of Heroku are that:

• It’s somewhat easier to manage than Amazon Web Services EC2 for the tech-wary (no need for security groups,
no need to ssh in).

• You can set up a free PostgreSQL server (which is highly recommended to use over the default SQLite database
that psiTurk uses).

• You get free SSL if you want to host your own ad, which is good because the psiTurk Secure Ad Server goes
down under heavy load.

• It’s scaleable.

• You get a Heroku buffering server in front of your psiTurk gunicorn instance, which helps with performance a
little bit (although it would be better to put nginx in front of gunicorn within the psiTurk instance).

One downside with Heroku is that it can get expensive if you need any kind of horsepower beyond 512MB memory
and one node.

What follows is a step-by-step tutorial for setting up a psiTurk example experiment on Heroku (both the experiment
itself and ad) with a PostgreSQL database for collecting data:

1. Go to the Heroku website and create a new account if you don’t already have one.

2. Make sure that psiTurk, git, and the Heroku Command Line Interface are installed on your computer.

3. Create a psiTurk example at a desired location (all commands listed in this tutorial are meant to be typed into
your terminal application):

psiturk-setup-example

76 Chapter 1. User’s Guide

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage#Security_concerns
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage#Security_concerns
http://www.heroku.com
amazon_ec2.html
configure_databases.html
secure_ad_server.html
http://www.heroku.com
install.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://devcenter.heroku.com/articles/heroku-cli

psiturk Documentation, Release 2.0

If you’re starting from a preexisting psiturk app, you need to grab three files from /psiturk/example: requirements.txt,
herokuapp.py, runtime.txt, and Procfile. Place them in your project root, next to your config.txt

1. Navigate into your newly created psiTurk example folder:

cd psiturk-example

Or if you are starting from an already-existing psiturk project, navigate to your project root dir.

2. Initialize a Git repository in the root dir of your psiturk project the psiTurk (your current working directory):

git init

3. Log in to Heroku (and put in your credentials when promted for them):

heroku login

4. Create a new app on Heroku. Running this command will add a remote to your .git/config file, which will
make it easier to run heroku commands from your project folder that are automatically associated with your
newly-created Heroku app.:

heroku create

5. Create a Postgres database on the newly created Heroku app:

heroku addons:create heroku-postgresql

6. Get the URL of the Postgres database that you just created:

heroku config:get DATABASE_URL

7. Get the URL of your app:

heroku domains

8. In your psiTurk example, open the config.txt file. Here, find and make the following settings for the these rows,
and then save the file:

database_url = <Your Postgres database URL that you retrieved above>
host = 0.0.0.0
threads = 1
ad_location = https://<Your app URL that you retrieved above>/pub
use_psiturk_ad_server = false

9. Run the following commands, replacing <XYZ> with your access and secret keys for Amazon Web Services
and psiTurk Secure Ad Server (you can also use this Python script to automatically run these commmands, pro-
vided that you’ve filled out your credentials in your .psiturkconfig file. Running this script is the recommended
approach!):

heroku config:set ON_HEROKU=true
heroku config:set psiturk_access_key_id=<XYZ>
heroku config:set psiturk_secret_access_id=<XYZ>
heroku config:set aws_access_key_id=<XYZ>
heroku config:set aws_secret_access_key=<XYZ>

10. Stage all the files in your psiTurk example to your Git repository:

1.17. Running psiTurk on Heroku 77

amt_setup.html#obtaining-aws-credentials
psiturk_org_setup.html#obtaining-psiturk-org-api-credentials
https://github.com/NYUCCL/psiTurk/blob/908ce7bcfc8fb6b38d94dbae480449324c5d9d51/psiturk/example/set-heroku-settings.py

psiturk Documentation, Release 2.0

git add .

11. Commit all the staged files to your Git repository:

git commit -m "Initial commit"

12. Push the code to your Heroku git remote, which will trigger a build process on Heroku, which, in turn, runs the
command specified in Procfile, which autolaunches your psiTurk server on the Heroku platform. Watch it run:

git push heroku master

13. Run psiTurk locally on your machine:

psiturk

14. To verify that your app is running, visit your heroku domain url in your browser. Obtain your heroku app url by
running:

heroku domains

From that url, you can conveniently obtain a debugging url by clicking “Begin by viewing the ad.”

15. Run through your experiment. You should now have some data in the database. To extract it into csv files, type:

download_datafiles

This should generate three datafiles for you in your local directory: trialdata.csv, questiondata.csv, and eventdata.csv.
Congratulations, you’ve now gathered data from an experiment running on Heroku!

From your local psiTurk session, you can now create and modify HIT’s. When these are accessed by Amazon Me-
chanical Turk workers, the workers will be directed to the psiTurk session running on your Heroku app. This means
that it is never necessary to launch psiTurk and run server on from _anywhere_ to run an experiment on Heroku. The
server is automatically running, accessible via your Heroku domain url. (Of course, if you want to debug locally, you
can still run a local server.)

Note that if you stay on the “Free” Heroku tier, your app will go to “sleep” after a period of inactivity. If your app
has gone to sleep, it will take a few seconds before it responds if you visit its url. It should respond quickly once it
“awakens”. Consider upgrading to a “Hobby” heroku dyno to prevent your app from going to sleep.

Also note that if you desire to run commands against your postgresql db, you can run heroku pg:psql to connect, from
where you can issue postgres commands. You can also connect directly to your heroku postgres db by installing and
runinng postgresql on your local machine, and passing the DATABASE_URL that you set in config.txt as a command-
line option.

1.18 Running psiTurk on Amazon’s Elastic Compute Cloud (EC2)

With Amazon Web Services (commonly abbreviated as AWS), you can host your experiment in the cloud, using Ama-
zon’s Elastic Compute Cloud (commonly abbreviated as EC2). What follows is a description of how to set up and
modify psiTurk on AWS using a pre-built EC2 image.

If you don’t already have an AWS account, first follow the instructions in Getting setup with Amazon Mechanical Turk.

78 Chapter 1. User’s Guide

command_line/hit.html
amt_setup.html

psiturk Documentation, Release 2.0

1.18.1 Setting up a psiTurk EC2 instance using a pre-built image

1. Sign in to your Amazon Web Services account and navigate to The AWS Console, then click on EC2 under the
‘Compute’ section, located under the ‘All services’ heading.

2. Make sure that the location in the top right corner is set to ‘US East (N. Virginia)’. (If not, you will not find the
pre-built image when searching for it.)

3. Either click the ‘Launch Instance’ button that appears on the EC2 dashboard, or click ‘Instances’ under the
‘INSTANCES’ section on the left menu, then click ‘Launch Instance’ there.

4. You should now be at ‘Step 1: Choose an Amazon Machine Image (AMI)’ in the EC2 Launch Instance Wiz-
ard. Click ‘Community AMIs’ on the left, then in the ‘Search community AMIs’ search box, search for ‘ami-
bcab37d4’. A single AMI should be listed: ‘ubuntu-psiturk-2 - ami-bcab37d4’. Click ‘Select’ on this AMI.

5. Choose your instance type. The micro instance is free-tier eligible and should be sufficient unless you’re expect-
ing very high traffic, bandwidth or lots of heavy computation on your experiment server. Click ‘Next: Configure
Instance Details’ at the bottom.

6. Click ‘Next: Add Storage’ and then ‘Next: Add Tags’.

7. You should now be at ‘Step 5: Tag Instance’. Click ‘Add Tag’ and name your EC2 instance in the ‘Key’ field so
that you’ll be able to tell it apart from other instances you might run in the future. Then click ‘Next: Configure
Security Group’.

8. A security group is a set of firewall rules that dictate who can access your server (based on IP) and through which
ports. You can create multiple security groups and assign one or more of them to any of your EC2 instances.
We’ll use a single security group for our instance.

Check the ‘Create a new security group’ radio button and fill in a name for your security group. There should
already be a rule for SSH with its Source (which IPs can connect via SSH) set to Anywhere (any IP). You can
change this to My IP for added security, but if your computer’s IP address changes, which will likely happen if
you change physical locations, you’ll need to modify this rule before you can connect via SSH again.

Click Add Rule, set the Type to Custom TCP Rule, and set the Port Range to ‘22362’, the port that the psiTurk
server runs on by default. If you set the Source to My IP, be sure to change it back to Anywhere before you try to
run the experiment on Mechanical Turk, otherwise nobody will be able to access it. Click ‘Review and Launch’.

9. If you chose Anywhere for either of the two Security Group Rules, you’ll be shown a warning about this. Review
your settings and click Launch.

10. You’ll now be prompted to download a key pair to use for public key-based authentication when logging in
via SSH. This is far more secure than password-based authentication. Select Create a new key pair, and name
the key pair to whatever you want (preferably the same name as your instance). Click Download Key Pair and
save the .pem file somewhere safe yet accessible as you’ll need it every time you connect via SSH. Check the
acknowledgment checkbox and click Launch Instance to complete the instance creation process.

11. On Linux or Mac, set the file permissions on the key so that only you can read it. You can do this by opening
the terminal, navigate to the folder where you saved your key pair and then type

$ chmod 400 your-key.pem

1.18.2 Connecting to your EC2 instance using SSH

1. Navigate back to the EC2 console (AWS Console <https://console.aws.amazon.com/console/>. Then click on
“Instances” under the “INSTANCES” section on the left menu and click in the checkbox for the instance that
you want to connect to. In the info appearing at the bottom, look for the IPv4 Public IP entry.

1.18. Running psiTurk on Amazon’s Elastic Compute Cloud (EC2) 79

https://console.aws.amazon.com/console/
https://en.wikipedia.org/wiki/Secure_Shell

psiturk Documentation, Release 2.0

2. Use the public key you downloaded during instance creation to connect to the machine at the public IP you just
found. The default username for the pre-built image is ubuntu. On Linux or MacOS, open up a terminal session,
navigate to the folder where you saved your key pair and type

ssh -i your-key.pem.txt ubuntu@xx.xx.xx.xxx

where xx.xx.xx.xxx should be replaced with the public IP you just found. Type yes when the system asks you
whether to continue connecting. You should now be logged into the instance. If you get a Permissions . . . are
too open error, follow the chmod step in the previous section to fix this.

1.19 Understanding Error Messages

When there is an error, various messages are shown to the work. This guide will document what the mean from an
experimenter’s point of view and what probably went wrong.

1.20 Frequently Asked Questions

1.20.1 Why doesn’t psiTurk work on Windows?

Windows has very limiting security restrictions which prevent server processes from running. As a result we cannot
support Windows. Instead we support all system based on an underlying Unix kernel which can run python. This
include Mac OS X and Linux.

1.20.2 I need an experiment to do X, will psiTurk be able to do this?

Generally any standard psychology experiment can be run using psiTurk. This means experiments with multiple
trials, trials which change based on participant’s past responses, experiments with multiple phases or trial types,
surveys, experiment recording reaction time, mouse tracking experiments, decision making, etc. . . The possibilities
are actually not as much a function of psiTurk as of the capabilities of programming an experiment in Javascript. Any
web application or applet that runs Javascript should play nicely with psiTurk with a little hacking. psiTurk mostly
just provides the server and data logging capabilities, and it is up to you to define how your experiment actually looks
and behaves.

There are examples in the experiment exchange which provide a more concrete understanding of the scope of things
people have attempted with psiTurk.

One place where psiTurk currently hasn’t been used is group or multi-player experiments (although we’ve heard
rumors of users who have reported success with this). In addition, we are not aware of people using psiTurk yet for
multi-day or multi-session experiments. This is not a technical limitation per-se but may require some hacking. We’d
be happy if someone tried to do these types of experiments and reported back about what we could add to the core
psiTurk code to help with this.

1.20.3 My university will not give me a static IP address. Can I still use psiTurk?

psiTurk requires an generally internet-addressable computer. Some universities prevent this for security purposes.
There are a couple of solutions if this situation applies to you. First you can run psiturk via an ssh session on any
remote computer or server for which you can launch server processes. Examples would be a lab server that has a static
ip address and allows users-lavel access to particular ports. Alternative there are a number of (free) services which
will give you a unix command line “in the cloud” including Red Hat’s OpenShift. Detailed instruction on how to do
this are available here.

80 Chapter 1. User’s Guide

https://psiturk.org/ee
https://www.openshift.com/
openshift.html

psiturk Documentation, Release 2.0

1.20.4 I’m trying to run psiTurk at home using a cable modem or other connection.
Will it work?

In general this set up is definitely possible. However, you may need to configure the wireless router that came with
your internet service to forward particular incoming ports to your device (i.e., to you laptop instead of you phone or
tablet). There are many excellent tutorials about this online.

1.20.5 I’m having trouble with my AWS/AMT credentials

In order to use your credentials you must create a requester account on Amazon Web Services. This usually involves
providing a credit card number as well as a phone verification step. Finally, some users report having to log into
http://requester.mturk.com at least once to agree to the software terms.

1.20.6 What do I need to know about running psiTurk on a remote server?

The psiTurk command line process and server generally works great over a ssh connection. Perhaps the only thing
to be aware of are that you set the host field of your project’s local configuration file to the ip address of the remote
machine if you want to be able to easily access it. In addition, while the standard debug command automatically
launches your web-browser, you usually don’t want this behavior on the remove machine. Instead use debug -p to
simply print the correct URL and copy/paste it into a browser on your local computer.

1.20.7 Can you program my experiment for me?

Nope, sorry. Please check the experiment exchange for examples you might be able to draw insight from.

1.20.8 I’m having Javascript errors when designing my experiment. Can you help?

Sorry, but probably not. See the above about programming experiments. There are many ways of getting help with
psiTurk specifically and many excellent tutorials online for developing web applications using Javascript. A good
example is CodeAcademy’s Javascript lessons.

1.20.9 Where is the /static/js/psiturk.js file? It doesn’t appear in any of the experi-
ments I have downloaded!

psiturk.js doesn’t actually “exists” as a file in the static folder of any project. Instead, the psiturk server/command line
tool automatically generates this file. The best way to view it is by “view source” in your browser while debugging
your experiment. While somewhat unintuitive, this ensures that changes to psiturk.js are linked to new versions of the
overall psiturk command line tool (since they are tightly interdependent).

1.21 Getting help

There are a number of ways to get help with psiTurk if you are stuck.

1. The https://psiturk.org website has a wealth of information about the system.

2. There is a Google Group devoted to psiTurk located here. Search for answers to common questions or post your
own. Chances are if you run into a problem someone else will as well.

1.21. Getting help 81

http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/
http://requester.mturk.com
https://psiturk.org/ee
getting_help.html
http://www.codecademy.com/tracks/javascript
https://psiturk.org
https://groups.google.com/forum/#!forum/psiturk

psiturk Documentation, Release 2.0

3. Browse the issues list on github. This is an open discussion of possible issues, bugs, feature requests, etc. . .
If your problem doesn’t appear in the open or closed issues you might consider opening a bug report. See the
guide for contributors for more information about using the issues tracker.

4. Todd Gureckis taught a class covering online data collection and psiTurk at NYU Spring 2014. All lectures
were videotaped and are available here.

5. Follow @psiturk on Twitter for helpful tips and breaking news.

6. If all else fails and you feel you simply cannot get help you can consider emailing authors@psiturk.org, the
benevolent dictators of the project and system architects. However, if you haven’t first pursed the above options
you may not get a quick response.

1.22 Disclaimer

psiTurk is free, open source software provided to scientists to aid in research. Because it helps you run paid experi-
ments online using Amazon Mechanical Turk errors in the software, or in your use of the software, can lead to loss of
money. This is the very nature of online research (errors may mean someone will actually do your task and you need
to pay them as a result).

Our belief is that these types of errors can be best limited by having open, peer-reviewable software and sharing bug
reports between labs and research groups. In other words, even if you wrote this software yourself it is possible that
some bug could cost you money when getting started.

Danger: We take no responsibility for your use of the software. We make no claims that it is bug-free and
any errors are not our responsibility. This is a community-run, community-supported system and not a company
selling a product. We use the software in our lab and, when used correctly, has never caused us to lose money on
Mechanical Turk due to mistakes. However, it is always possible to mis-use the software in a costly way.

In addition, while we strive to keep the psiturk.org Secure Ad Server running, crashes in that system could, in the
short-term, affect your ability to collect data. Again, using the system you must understand what the risks are. The
good news is that because the system is open source if there is a problem everyone can read the code themselves and
make suggestions on how to fix things.

Some suggestion to avoid costly mistakes from happening are

1. Test your code a lot in the sandbox to make sure every stage is working and you understand what psiTurk is doing.

2. Run small batches at a time to verify everything is working

3. Keep your Amazon payments account balance reasonably low at any point in time. It is impossible to spend more
money than is in your account at any point in time.

4. Exit the psiTurk server when you are not using it to collect data (i.e., do not leave psiTurk server running indef-
initely). This ensures that no one will be able to actually perform your task and then claim they are owed payment.
This also limits the ability of bots and other scammers to reverse engineer your task.

5. When testing “live”, explain in the text of your Ad that this is a test and you are looking for feedback. Workers get
fustrated when you put bad or broken experiments online, but are often very helpful if you explain that you are hoping
to get feedback on an unfinished project.

82 Chapter 1. User’s Guide

https://github.com/NYUCCL/psiTurk/issues?state=open
http://psiturk.readthedocs.org/en/latest/contribute.html#create-issues
http://gureckislab.org/~gureckis
http://gureckislab.org/courses/spring14/online_data_collection/
https://twitter.com/psiturk
mailto:authors@psiturk.org

CHAPTER 2

Contributing to psiTurk

2.1 Contributing to psiTurk

Note: This guide is copied more or less from the contributors guidelines of the gunicorn project. Alternations were
made for the nature of this particular project. An up to date copy of this guide always resides here.

Want to contributed to psiTurk? Awesome! Here are instructions to get you started. We want to improve these as we
go, so please provide feedback.

2.1.1 Contribution guidelines

Pull requests are always welcome

We are always thrilled to receive pull requests, and do our best to process them as fast as possible. Not sure if that
typo is worth a pull request? Do it! We will appreciate it.

If your pull request is not accepted on the first try, don’t be discouraged! If there’s a problem with the implementation,
hopefully you received feedback on what to improve.

We’re trying very hard to keep psiTurk lean, focused, and useable. We don’t want it to do everything for everybody.
This means that we might decide against incorporating a new feature. However, there might be a way to implement
that feature on top of psiTurk.

Discuss your design on the mailing list

We recommend discussing your plans in our Google group before starting to code - especially for more ambitious
contributions. This gives other contributors a chance to point you in the right direction, give feedback on your design,
and maybe point out if someone else is working on the same thing.

83

https://github.com/gureckis/gunicorn/blob/master/CONTRIBUTING.md
https://github.com/benoitc/gunicorn
https://github.com/NYUCCL/psiTurk/blob/master/CONTRIBUTING.md
https://groups.google.com/d/forum/psiturk

psiturk Documentation, Release 2.0

Create issues. . .

Any significant improvement should be documented as a github issue before anybody starts working on it.

. . . but check for existing issues first!

Please take a moment to check that an issue doesn’t already exist documenting your bug report or improvement
proposal. If it does, it never hurts to add a quick “+1” or “I have this problem too”. This will help prioritize the most
common problems and requests.

Conventions

Fork the repo and make changes on your fork in a new feature branch:

• If it’s a bugfix branch, name it XXX-something where XXX is the number of the issue

• If it’s a feature branch, create an enhancement issue to announce your intentions, and name it XXX-something
where XXX is the number of the issue.

Make sure you include relevant updates or additions to documentation when creating or modifying features.

Write clean code.

Pull requests descriptions should be as clear as possible and include a reference to all the issues that they address.

Code review comments may be added to your pull request. Discuss, then make the suggested modifications and push
additional commits to your feature branch. Be sure to post a comment after pushing. The new commits will show up
in the pull request automatically, but the reviewers will not be notified unless you comment.

Commits that fix or close an issue should include a reference like Closes #XXX or Fixes #XXX, which will automatically
close the issue when merged.

Add your name to the THANKS file, but make sure the list is sorted and your name and email address match your git
configuration.

Contributing to the docs

Our docs are currently hosted at readthedocs. Readthedocs uses Sphinx as the backend for their documentation so in
order to update the docs you will first have to install Sphinx simply by typing:

easy_install -U Sphinx

on the command line.

There’s a Makefile in the docs directory, so you can generate the docs by running make on the command line, for
example:

make html

will generate the html docs in _build/html. Running make with no arguments will show you the available subcom-
mands.

All documentation files are in the docs folder and are formatted as reStructured Text. A good, detailed manual for the
reStructured Text syntax can be found here.

Some essentials:

84 Chapter 2. Contributing to psiTurk

https://github.com/NYUCCL/psiTurk/issues
http://psiturk.readthedocs.org
http://sphinx-doc.org/
http://docutils.sourceforge.net/docs/user/rst/quickstart.html

psiturk Documentation, Release 2.0

The index page is the main page that users see will see when they open the docs. It is also how readthedocs generates
the sidebar that contains all the names of individual pages in the documentary so it is important that this is formatted
correctly.

The main important feature is the toctree.

The toctree just looks like this:

.. toctree::
forward
install
quickstart
recording

Sphinx will go through the pages listed in the toctree, search for subject headers and create both links for the index
page and the sidebar in the correct format in the order that the pages are listed. For this reason, it is also very important
that subjected headers be used correctly on the individual pages. For example, the forward page has a title that looks
like this:

Forward
=======

and subtitles that look like this:

What is psiTurk?
~~~~~~~~~~~~~~~~

It actually doesn’t matter what character you use for the underline, it can be any of

= - ‘ ‘ ” : ~ ^ _ * + # < >

but it must be consistent since all headers with the same character will be at the same level. For convenience, we are
using ===== to mean title and ~~~~~ to mean sub header. Some other basic things in rST:

Links look like this:

‘‘Getting psiTurk installed on your computer <install.html>‘‘_

with the actual page in angle brackets. If the link is to another page within the docs, you only need to include the name
of the page. Whenever you include a code example, put this line before:

.. code:: javascript

All pages on readthedocs.org (including this one) have a link to “Edit on Github.” This can be a great way to “steal”
formatting ideas for your documentation edits.

2.1.2 Decision process

How are decisions made?

In general, all decisions affecting psiTurk, big and small, follow the same 3 steps:

• Step 1: Open a pull request. Anyone can do this.

• Step 2: Discuss the pull request. Anyone can do this.

• Step 3: Accept or refuse a pull request. The little dictators do this (see below “Who decides what?”)

2.1. Contributing to psiTurk 85

http://sphinx-doc.org/markup/toctree.html


psiturk Documentation, Release 2.0

Who decides what?

psiTurk, like gunicorn, follows the timeless, highly efficient and totally unfair system known as Benevolent dictator for
life. In the case of psiTurk, there are multiple little dictators which are the core members of the gureckislab research
group and alumni. The dictators can be emailed at authors@psiturk.org.

For new features from outside contributors, the hope is that friendly consensus can be reached in the discussion on a
pull request. In cases where it isn’t the original project creators John McDonnell and/or Todd Gureckis will intervene
to decide.

The little dictators are not required to create pull requests when proposing changes to the project.

Is it possible to become a little dictator if I’m not in the Gureckis lab?

Yes, we will accept new dictators from people esp. engaged and helpful in improving the project.

How is this process changed?

Just like everything else: by making a pull request :)

2.2 Project Roadmap

psiTurk is always looking to improve and to increase the number of contributors. We thought it would be helpful to
lay out a basic roadmap of where we would like to see the project go in the future. This roadmap may inspire you to
implement a new feature!

2.2.1 General priorities

Documentation

The documentation is greatly lagging behind progress on the psiTurk platform. We need help with people debugging
documentation, improving it, and making additions! Notice how all documentation pages (including this one!) include
a link to “Edit on GitHub”. Make a pull request and help us improve these docs!

Automated testing

The version 2.0 release introduced a number of new features which are fairly complex because they require commu-
nication over the Internet, RESTful APIs, etc. . . While there are automated unit tests for many of these features, it is
important to have better tests of these features. Testing isn’t glamorous but writing tests improves your health, looks,
and chances of getting in heaven.

Alternative database solutions

Currently psiTurk offers a variety of database solutions including local SQLite files, self-administered MySQL
servers, and MySQL processes hosted on Amazon’s Web Services (RDS) platform. However, all of these are a little
clunky and require users to know quite a bit about data management. The demands placed on these databases by a
single experiment are not excessive, and thus there might be a more robust solution (e.g., NoSQL). One possibility is
to host a robust cloud-based data API off psiturk.org.

86 Chapter 2. Contributing to psiTurk

http://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life
http://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life
http://gureckislab.org
mailto:authors@psiturk.org
https://github.com/johnmcdonnell
https://github.com/gureckis


psiturk Documentation, Release 2.0

psiturk.js

All projects currently should use psiturk.js to save data to the server and update the user status as they progress. It
might be nice if these included additional features including easily displaying instructions, providing simple quizes,
etc. . . In theory many parts of the psiturk command shell could be moved into the psiturk.js library (e.g., one could
even create hits and ads via javascript calls). This might eventually allow the power of the psiturk platform to be
leveraged even on simple, standard web server platforms (i.e., not relying on Flask).

Ad Server

The Ad Server has the potential to gather valuable data about participants in studies, how naive they are, etc. . . Cur-
rently only a limited number of statistics are gathered, and much of this data is not publically accessible via an API
or interface. Future versions of the psiturk.org dashboard could provide users with more interesting statistics about
participants in their experiments, their geographic location, etc. . .

Unique IP issues

A major issue with psiTurk is that it requires a unique, Internet addressable IP address. This is a hurdle at some
universities or companies. This is a bug and a feature at some level. The feature side is that for many users the ability
to serve experiments off their local computer obviates the need for a dedicated server and simplifies some web security
issues. For other users thought this is a fustrating hurdle to overcome in order to use psiturk. We are interesting in the
community’s thoughts about this and suggestions about best practices include cloud based hosting systems like Red
Hat’s OpenShift and Amazon’s AWS.

2.2.2 Version 3.0

We envision that eventually psiturk could move entirely into the cloud (i.e., no need for user to install command line
tool). This may be supported by changes and extensions to the psiturk.org API and the psiturk.js library. The emphasis
in our initial development has been on advanced users/programmers comfortable in a unix environment, but future
version could emphasize novice web programmers who are new to online experiments (e.g., undergrads).

If you have ideas about future directions for the project the Github issues tracker is a great place to share them.

2.2. Project Roadmap 87

https://github.com/NYUCCL/psiTurk/issues?state=open


psiturk Documentation, Release 2.0

88 Chapter 2. Contributing to psiTurk



CHAPTER 3

API Reference

3.1 psiturk.js API

Everything in the psiturk.js API is scoped under the psiturk namespace.

3.1.1 Creating the psiTurk object

To use the psiTurk library, a psiturk object must be created at the beginning of your experiment. It
takes two key arguments uniqueId and adServerLoc. These two variables are first created in exp.html
<file_desc/exp_html.html>. They tell psiTurk which unique number/code corresponds to the current participant (al-
lowing updating of data as the task progresses) and the location of the ad where users should be sent when the task is
complete.

// Create the psiturk object
var psiTurk = PsiTurk(uniqueId, adServerLoc);

// Add some data and save
psiturk.addUnstructuredData('age', 24)
psiturk.saveData();

The following documents the javascript API.

3.1.2 psiturk.taskdata

taskdata is a Backbone model used to store all data generated by a participant and to sync it to the database.

taskdata has the following fields with these default values:

condition: 0
counterbalance: 0
assignmentId: 0

(continues on next page)

89

secure_ad_server.html
http://backbonejs.org/#Model


psiturk Documentation, Release 2.0

(continued from previous page)

workerId: 0
hitId: 0,
useragent: ""
currenttrial: 0
data: ""
questiondata: {}
eventdata: []

These variables are either set during initialization or using the methods of the psiturk object. However, since
taskdata is a Backbone model, you can always access their values directly using the Backbone `set <http://
backbonejs.org/#Model-set>‘__ and `get <http://backbonejs.org/#Model-get>‘__ methods, which may be useful for
debugging. For example:

psiturk.taskdata.set('condition', 2);
psiturk.taskdata.get('condition');

3.1.3 psiturk.preloadPages(pagelist)

For each path in pagelist, this will request the html and store in the psiturk object. A given page can then be
loaded later using psiturk.getPage(pagename).

Example:

// Preload a set of HTML files
psiturk.preLoadPages(['instructions.html', 'block1.html', 'block2.html']);

// Set the content of the body tag to one of the pages
$('body').html(psiturk.getPage('block1.html'));

3.1.4 psiturk.getPage(pagename)

Retrieve a stored HTML object that has been preloaded using psiturk.preLoadPages.

3.1.5 psiturk.showPage(pagename)

Set the BODY content using an HTML object that has been preloaded using psiturk.preloadPages.

Example:

psiturk.preloadPages(['instructions.html', 'block1.html', 'block2.html');
psiturk.showPage('instructions.html');

3.1.6 psiturk.preloadImages(imagelist)

Cache each image in imagelist for use later.

3.1.7 psiturk.recordTrialData(datalist)

Add a single line of data (a list with any number of entries and any type) to the psiturk object. Using this will not
save this data to the server, for that you must still call psiturk.saveData().

90 Chapter 3. API Reference

http://backbonejs.org/#Model
http://backbonejs.org/#Model-set
http://backbonejs.org/#Model-set
http://backbonejs.org/#Model-get


psiturk Documentation, Release 2.0

Example:

// data comprised of some list of variables of varying types
data = ['output', condition, trialnumber, response, rt];
psiturk.recordTrialData(data);

3.1.8 psiturk.recordUnstructuredData(field, value)

Add a (field, value) pair to the list of unstructured data in the task data object.

Example:

psiturk.recordUnstructuredData('age', 24);

3.1.9 psiturk.saveData([callbacks])

Sync the current psiTurk task data to the database.

An optional argument callbacks can provide functions to run upon success or failure of the saving.

psiturk.saveData({
success: function() {

// function to run if the data is saved
},
error: function() {

// function to run if there was an error
}

});

3.1.10 psiturk.completeHIT()

This finishes the task by passing control of the experiment back to the Secure Ad Server <secure_ad_server.html>.
When in debug mode this just cleans up the task. When running live on the sandbox or live site this passes control of
the browser back to the Ad Server so that the subject can be marked as complete and the user’s browser will correctly
finish the HIT on Amazon’s site.

3.1.11 psiturk.doInstructions(pages, callback)

psiTurk includes a basic method for showing a sequence of instructions. You are always free to write your own
instructions code (and may need to). However, this provides a basic template for a pretty simple typical type of
instructions composed of a sequence of multiple pages of text and graphics along with a “next” and (optionally)
“previous” button.

The doInstructions() method takes two arguments. The first is a list of HTML pages that you would like to
display. These should appear in the order you would like them to be displayed to participants. The instructions method
uses the showPage() method to display the HTML of the page.

Prior to calling doInstructions() all the instruction pages you plan to display should be preloaded using the
preloadPages() method.

Within each HTML page there should be a button or other HTML element with class equal to continue which the
user can click to move to the next screen.

An Bootstrap example is:

3.1. psiturk.js API 91

api.html#psiturk-showpage-pagename
api.html#psiturk-preloadpages-pagelist
http://getbootstrap.com


psiturk Documentation, Release 2.0

<button type="button" id="next" value="next" class="btn btn-primary btn-lg continue">
Next <span class="glyphicon glyphicon-arrow-right"></span>

</button>

In addition, if the HTML document includes an element with class previous it will, when clicked, go to the previous
page. As a result you should not include a previous button on the first HTML page.

An example previous button using Bootstrap is:

<button type="button" id="next" value="next" class="btn btn-primary btn-lg previous">
<span class="glyphicon glyphicon-arrow-left"></span> Previous

</button>

The final argument to the instructions object is the method to be called when the “continue” button on the last page of
the instructions is called.

Example

psiturk = new PsiTurk(uniqueId, adServerLoc);
var pages = [

"instructions/instruct-1.html",
"instructions/instruct-2.html",
"instructions/instruct-3.html"];

psiTurk.preloadPages(pages); // preload the pages
var instructionPages = [ // any file here should be preloaded first

"instructions/instruct-1.html",
"instructions/instruct-2.html",
"instructions/instruct-3.html"]; // however, you can have as many as you like

psiturk.doInstructions(instructionPages,
function() { currentview = new StroopExperiment(); });

The last line in this example uses an anonymous function to launch the Stroop Experiment.

3.1.12 psiturk.finishInstructions()

finishInstructions is used to change the participant’s status code to 2 in the database, indicating that they
have begun the actual task.

In addition, this removes the beforeunload handler such that if people attempt to close (or reload) the page, they
will get an alert asking them to confirm that they want to leave the experiment.

You do not have to use doInstructions() in order to call finishInstructions(). In the example above
you would want to call psiturk.finishInstructions() in the StroopExperiment() class.

Example

psiturk = new PsiTurk(uniqueId, adServerLoc);
...
psiturk.finishInstructions();

3.2 psiturk.org RESTful API

92 Chapter 3. API Reference

http://getbootstrap.com
stroop.html

	User’s Guide
	Forward
	Getting psiTurk Installed on Your Computer
	Getting setup with Amazon Mechanical Turk
	Getting setup with psiturk.org
	psiturk.org Secure Ad Server
	Sharing and replicating with the psiTurk.org Experiment Exchange
	Quickstart
	Configuration Files
	Command-line Interface
	Configuring Databases
	Step-by-step Tutorials
	Anatomy of a basic psiTurk project
	Recording data
	Retrieving Datasets
	Customizing psiTurk
	Using external survey tools with psiTurk
	Running psiTurk on Heroku
	Running psiTurk on Amazon’s Elastic Compute Cloud (EC2)
	Understanding Error Messages
	Frequently Asked Questions
	Getting help
	Disclaimer

	Contributing to psiTurk
	Contributing to psiTurk
	Project Roadmap

	API Reference
	psiturk.js API
	psiturk.org RESTful API


